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SUMMARY

Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and

unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients.

Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer,

normal strain, and buoyancy, are included in the analyses.

INTRODUCTION

In chapter I it was pointed out that turbulence is multiscaled. That is, it consists of small eddies (small-scale motion) super-

imposed on larger-scale motion. In order to proceed with our study of the dynamics of turbulence, we should consider how the

turbulent activity is distributed among the various scales of motion, together with the interaction, if any, of those scales.

One possible (the usual) way of representing scales of motion is by means of a series of trigonometric functions, that is,

by a Fourier series. For example, one might write a turbulent velocity u as

u= _ (A_¢ cos_x+ B_ sinlcx),

K=I

where x is a distance, _: is known as the wavenumber (with dimension l/length), and the values of the coefficients A_: and B_¢

depend on the turbulence. For simplicity the system is assumed here to be one-dimensional. Larger values of _: correspond to smaller

eddies (smaller spatial scales) and vise versa.
Basis functions other than trigonometric are sometimes used to represent turbulence, particularly in numerical simulations

with boundary conditions other than periodic (ref. 1). Moreover, attempts are sometimes made to represent the turbulence by

functions whose shape is closer to that of a typical eddy (if such can be defined) than is that of trigonometric functions (refs. 2 and

3). For instance the steep instantaneous gradients which are known to occur in turbulent flows, particularly at high Reynolds

numbers, might be incorporated into the basis function. However, most of the work on turbulence has used trigonometric basis

functions (see e.g., ref. 4), and those will be adequate for our purposes.
In addition to using Fourier analysis for instantaneous turbulent quantities, one can use it to analyze averaged quantities,

such as those in the two-point correlation equations (section 4.3.4). Since the latter are easier to deal with than unaveraged quantities,

which may require the use of generalized functions, they will be considered first.



5.1FOURIERANALYSIS OF THE TWO-POINT AVERAGED CONTINUUM EQUATIONS

5.1.1 Analysis of Two-Point Averaged Quantities

One can decompose the two-point velocity correlation u i u] (r) into a three-dimensional series of trigonometric functions

(eddy sizes) as follows:

oi,-7<,)--£ o'**.
If oo

(5-1)

where the trigonometric series has been written in complex notation by using the Euler relation

e i_¢'r = cosif-r+i sin If-r, (5-2)

and where ui and ui are velocity components at two points which are separated by the vector r, If is a wavevector,

K- r = Kk rk = K:lri + IC2r2 + g:3r3 is the dot product of the vectors If and r, and the ((Pijh¢are called Fourier coefficients. The (_0ij)K

are complex because of the presence of the complex exponential in equation (5-1), and because u i u_ (r) is real. To simplify the

notation, possible dependencies on x and time have been omitted. The summation in equation (5-1) is taken separately over each

component of to.

To determine the coefficients (qhj)_ multiply both sides of equation (5-1) by e -n'r and by dr = drldr2dr 3.Then, integrating

over the period 2n for each component of r, we get

(qgij)K :_-_ U i ui(r) e -r'r dr, (5-3)

since terms for which nk _ lCkare zero because of the periodicity of e0c'n)'r. Equation (5-1) gives the three- dimensional Fourier-

series expansion of u i u i (r), where the (quijhc are given by equation (5-3). Since u i u] is a second-order tensor (section 2.4.1),

equation (5-3) will have meaning only if (_j)_ is a second-order tensor (section 2.9).

If the period over which r k is defined is Rk rather than 2re, where the three Rk are not necessarily equal, equations (5-1)

and (5-3) become respectively,

Ui u_(r)= £ / _ i2mCkrk/R00t ij) e
I__-oo

(5 -4)

and

= 1 fRk/2Rll_R 3 J-Rk/2 Ui Ui(V) e-'2_'_/R<_)dv,
(5-5)

where the dummy variable r on the right side of equation (5-3) has been changed to v to avoid later confusion.

Consider now the case where Rk_. To that end, substitute equation (5-5) into (5-4). That gives

• £ ,
u i uj (r) = RIR2R3

K _

i2rockvk/Rt'k) f Rk/2 U" " (V) e-i2r_kvk/R0t)dv,
e ,l_Rk/2 t Uj

(5-6)
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Next let

2_

- ASk, (5- 7)
R k

where Sk is given by

Sk - Kk_kS(k) ' (5-- 7a)

(no sum on k), and ASk is an increment of Sk. From equations (5-7) and (5-7a),

2nn k (5 - 7b)
S k = )

R(k)

showing that Sk varies linearly with t:k for a given period Rk. Equation (5-6) can then be written as

V f Rk/2 U ] eiSkVk ASlAS2AS3Ui n_(r)= £ LJ_Rk/2 i u_(v)e -iskvkdv (2/Q 3
$_.°_

where ASk is given by equation (5-7). For Rk ---) oo(ASk---) 0, see equation (5-7)), equation (5-8) becomes

Ui ui(r ) = j.._L(-_)3 j.. u i u_(v)e -is'vdv eiS'rds

since, for each value of k (k = 1,2,3),

(5-8)

(5-9)

lim £ fsk AS(k) = 5_. f(Sk ) dS(k)
ASk--_0

Sk =.--_

(5-10)

(no sum on k). Equation (5-10) can be considered a defintion of the definite integral ___, f(s k) dS(k ) . Equation (5-9) gives the

Fourier-integral representation of u i uj (r).
If we let the quantity in brackets in equation (5-9) be equal to _ij, and replace the dummy variables s and v by I¢ and r

respectively, we get

J--_f°°(Pij0¢ ) eiK'rdl¢, (5 - 11)ui(r)u i

and

q)ij(r )= 1 _ [** _(r_e-iK'rdr.
(2n) 3 J-_* _ j, ,

(5-12)

The quantity tPijO¢) is the three-dimensional Fourier transform of u i u i (r). Like ((Pij)_: in equation (5-3), it shows how spectral

contributions to u i u_ (r) are distributed in wavenumber space. The difference between the two is that (tPij)r applies when u i u i (r)

is defined over a finite part of physical space (r-space), whereas tPij0¢) applies when u i u_ (r) is defined over all of r-space. The

quantity tPij(if) exists, ofcourse, onlyiftheintegralinequation(5_12)exists, orif u i u i (r) in equation (5-12) is absolutely integrable

over r (ref. 5), but that is usually the case (see e.g., fig. 4-16). By analogy with (Pij0¢) (eq. (5-12)), (_Pij)r (eq. (5-3)) is sometimes

called the finite Fourier transform of u i u_ (r) (applicable when r remains finite (ref. 6). The treatment of the other two-point



correlationsissimilar. For example, the Fourier transform of the two-point (mechanical) pressure-velocity correlation a u_(r)is

given by the vector

_,j (1C)= (2_ f_ Ou'--_.(r)e-iK'rdr,

in place of equation (5-12), and, in place of equation (5-11), we have

OF

(5-13)

ou--](r)=j". Z,j(K)ei_'rd_ (5-14)

Itiseasytoshow thattakingthederivativeofa quantitywithrespecttorkmultipliesitsFouriertransformby igk.Thus,

19 ou--'-_,(r)=.[__.ig:k_.j0c)ei_'rd_ (5-15)
3rk

i_,._.:(Ic)=1 f" _.. _u_(r)e_i_.rdr.
* ' (2n}" J-_ork

Next we obtain the spectral form of the two-point averaged continuum equations.

(5- 16)



5.1.2 Analysis of the Two-Point Correlation Equations

To convert to spectral form the two-point correlation equations obtained in the last chapter (eqs. (4-147) to (4-150)), we

multiply those equations through by [l/(2n)3]e-ir'rdr and integrate from --_ to +oo. That gives

au_ au_ + [(1- n)Uk '

+

=- n Xj+(1-n ' "
P

(5-17)

+(l_2n+2n2)v O2_ij _2(1_2n)viKk O_iJ 2v_:2_ij,
a(xk),a(xk)° a(x0°

_ui

(5 - 18)

and

_ n2 0 _0ijk nick nil_j + i(jl(k_ij k ,

,

p[ 32_,j 2(1_ n)iK:i O_,j ]=_2_Ui [ O_kj . ](1 - n)2 _)(Xi)n 0(xi) n _ + K2_'J 0x k (1- n) ()(xi) n 'Kit'Pkj

(5 -- 19)

_(1_n)2 02_ikj
aCx,)°a(xk)°

n)ilgk agikj + (1 - n)iK i _ ++ (1 KilCktPikj,

where _Pijand _,j are given respectively by equations (5-12) and (513). Similarly,

(5 - 20)



and

= UiUkUj (r) e-l_'rdr, (5- 21)

q_jk(1C) = UiUjU [ (r) e-'K'rdr, (5 - 22)

where n and Xn are defined in figure (4-17), and functional dependencies on Xn and t are understood. Finally, the equation for

the mean velocity (eq. (4-151)) can be written in spectral form as

0Ui+ U _U i 1 0P 0 [" _U i i"°* ]
--=- Jr-- V----

t)t k _)Xk p _X i t_Xk [ OXk J__Oik (K)dK '
(5-23)

where u i u k has been eliminated by letting r = 0 in equation (5-11).
Equations (5-17) to (5-19), and equation (5-23), constitute the two-point spectral equations for inhomogeneous turbulence

with mean-velocity gradients. Note that these equations have a simpler form than the correlation equations, because derivatives with

respect to r or !c are absent. However, the introduction of spectral quantities does not alleviate the closure problem. As was the
case for the correlation equations, these spectral equations do not form acomplete set; the Fourier transforms of the triple correlations

are left undetermined. If the turbulence is sufficiently weak, and/or some of the mean gradients are sufficiently large, it may be

possible to neglect the triple-correlation terms.
As was the case for the Poisson equations (4-149) and (4-150), the terms on the right side of equations (5-18) and (5-19)

are source terms associated with the mean velocity and triple correlations. The interpretation of most of the terms in equation (5-

17) is also similar to that of terms in the two-point correlation equations. Thus, equation (5-17) contains turbulence-production,

convection, viscous, diffusion, and directional-transfer terms.

5.1.2.1 The spectral-transfer terms in equations (4-147) or (5-17).--It was indicated in section 4.3.4 that the two-point

equation (4-147) contains, in addition to the terms mentioned in the last paragraph, the new terms -2 -UiUkUj k

and (U_ - U k)Ou_./&'k which do not have counterparts in the one-point equation (4.140), and which require spectral analysis

for their interpretation. The Fourier transforms of those terms, as given in the spectral equation (5-17) are, respectively,

and

--ilCk(q)_jk-q)ikj) ----Tij(IC'Xn) = _" _. [-_(_-_)/_rk] e-mrdr'

-(U_- Uk)igkq)ij ===Ti_(K, Xn) = (2=_ _ [-(U_- Uk)_UiU--_./0r k ] e-iC'rdr,

(5-24)

(5-25)

where x is included in the functional designations for Tij and Ti] to emphasize that the turbulence can be inhomogeneous.

Consider first the term Tij(r, xn), which is the three-dimensional Fourier transform of the turbulence self-interaction term
\L.

term absolutely integrable--"_uiuju k - UiUkUj]/dr k.,_ That should be overt in order for its Fourier transform to exist (ref. 5).

Moreover, if a wall is present in the flow, a finite Fourier transform with respect to the component of r normal to the wall would

be appropriate (eq. (5-3)) (see discussion following eq. (5-12) and ref. 6).

We want to interpret the term Tij(_, xn). To that end, referring to figure 4-17, one notes that

from which

In subscript notation,

x+r=x, x+nr=x n

Xn + nx" + (1 - n)x.

rk = x k - Xk, (5- 26)



and

(Xk)n =nxk + (1-n)x_,
(5-27)

where n is a number between 0 and 1. By using eqs. (5-26) and (5-27) and the rules for partial differentiation, one obtains

and

_xk (l--n) _(xk)n _k

3(Xk) n _rk

(5- 28)

(5- 29)

Taking the transform of equation (5-24), and solving (5-28), and (5-29) for 3/3rk, one can write

----U.U-U_ -I-Tij (1¢, Xn)ei_'rdl¢ = _ ,,
_1.k i j J¢ _kkUiUkUj

I _ -------7
= - + n ----r----v--, / uiu j u k +

) °txk).J
(5-30)

'_- ._uiu k +--r-----_, tnuiuju k +(1-n)_),
=--UiU k _Xl Uj _X k _(Xk)n

where the continuity condition _)uk/_gxk= 0 and the fact that quantities at one point are independent of the position of the other point

were used. Equation (5-30) becomes, for r = 0,

[_ ( _** _uj _uiu k
d._**Tij_,l¢.,Xn dK=- UiUk_xk_+Uj _x k )+_X k

_ UiUjU k

=--_tliUjU k +_UiU:U k =0,
_x k _x k J

(5-31)

since, for r = 0, x k = x k = (Xk) n . Therefore, even for a general inhomogeneous turbulence, Tij, when integrated over all

wavenumbers, gives zero contribution to the rate of change of u i uj (see eqs. (4-147) and (5-30)). Thus, Tij(_ xn) can only transfer

Fourier components of u i uj (energy for i = j) from one part of wavenumber space to another.

The quantity T'ij(I¢, xn) (see eq. (5-25)), in contrast to Tij0¢, Xn) (which produces turbulence self-interaction), is associated
with the interaction of the turbulence with the mean flow. However, both terms are related to transfer terms. We can write

_r k _ #
(,<,x.)e"<rd'< (5 - 32)



where"[ii (_" xn)is the Fourier transform of -(U_ - Uk)(0/0rk) u_.. Letting r = 0, equation (5-32) becomes

_. Tii (K, xa)dK: = 0 (5-33)

since, for r=0, U_ = U k. Thus, asin the case ofTij(_,xa), Ti_(gxn)gives zerototal contribution to the rate ofthe change of u i uj

(energy for i = j) and can only alter the distribution in wavenumher space of contributions to u i uj • We first interpreted and

calculated Ti_(_) as a transfer term for homogeneous turbulence in reference 7. (Craya (ref. 8) also discusses, in a general way, the
modification of homogeneous turbulence by uniform mean gradients, but does not show that Ti] is specifically a spectral-transfer

term.)

The quantities Tij and Ti_, defined respectively in equations (5-24) and (5-25), appear to he the only terms in the evolution

equation (5-17) which can be interpreted as spectral-transfer terms. As mentioned earlier, the other terms are interpretable as

production, convection, directional-transfer, diffusion, and dissipation terms.

The transfer of turbulent activity from one part of wavenumber space to another, or from one eddy size to another, produces

a wide range of scales of motion in most turbulent flows. The state of affairs is neatly summarized in a nonmathematical way by

a poem wmten long before equations (5-17), (5-31), or (5-33) were known (ref. 9):

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,

And so on to viscosity.

As will he seen later (e.g., sections 5.3.2.2 and 5.4.2.1), both Tiij and Tii generally (although not always (see fig. (5.61)) transfer

turbulent activity from larger to smaller scales of motion, where it can he dissipated more readily. Thus, Tij and Tii ordinarily have
stabilizing effects.



5.2FOURIER ANALYSIS OF THE UNAVERAGED (INSTANTANEOUS) CONTINUUM EQUATIONS

5.2.1 Analysis of Instantaneous Quantities

Consider now the Fourier (spectral) analysis of an instantaneous quantity such as the velocity ui(x). If ui is defined only

for xk between -x and K one can represent ui(x) by means of a Fourier series (finite Fourier transform (ref. 6)). Then, in place of

equations (5-1) and (5-3) one has, respectively

U i (X)= _ ((l)i)lc eil:'XdK, (5-34)

Ic oo=.

and

(%°i)K= u i (x) e-iKXdx. (5 - 35)
7_

If, instead of being defined over a finite portion of physical space, ui(x) is defined for Xk from--_ to +co, one might suppose

that equations (5-34) and (5-35) would become a Fourier-transform pair such as that given by equations (5-11) and (5-12). Thus,

one might write

U i (X) = .[2 (Pi (lc)eiK'xdl¢" (5 - 36)

and

1
(5 - 37)

where _ (,c) is the Fourier transform of ui(r). However, 9i(,c) as given by equation (5-37) may not exist in the ordinary sense, since

the integral in that equation can be infinite (in contrast to the integral in equation (5-12)). That happens when the strength of the

velocity fluctuation ui(x) in equation (5-37) does not approach zero sufficiently fast as Ixl (for example, when ui(x) is a

stationary random function). The problem is sometimes solved by replacing the integral in equation (5-36) by a stochastic Fourier-

Stieltjes integral, as in references 4 and 10. But it may be simpler to consider q0i(,¢) as a generalized function (refs. 11 to 13).

Probably the simplest generalized function is the Dirac delta (or impulse) function _(K:k -q_) which can, for our

purposes, be defined as

 -"im

fork= 1,2,or3 (no sum on k), and where q_ is aparticular value ofrk. Since _(_:k -q_)-_.o as q_ -+ lCk,it has the property

that

J'2 6(Kk-q_)ai (_:k)d_:k=ai(q_)'

where ai(r,k) is a continuous function. Note also that (for one dimension),

;2 _(lc)dlc= lim [** single d_:=l,
g-.,,,_ .'--oo _K

(5 - 39)

(5 - 40)

2 eirXdx = lim ,[__ (cos _:x + i sin rx)dx = 2rc8(_:),
g--Ooo g

(5-41)



and

]__e-iXXdx= 2_8(x:). (5 - 42)

Thus, although the integrals in equations (5-41) and (5-42) do not exist in the sense of being ordinary functions, they are equal to

the generalized function 2r,_(x).

Returning now to the problem of the existence of the Fourier transform _i(K), as given by equation (5-37), we try replacing
m.x

ui(x) by the trigonometric function 23ai e q . That gives

1 ** 1
_Pix:= _-S__.aie i(qm-K)x Jax = _-"'_-ai lira sin[g(lcl-q[n)] sin[g(x:2 q_)l sin[g(x:3 -q_)]

g_** _:i _q_n _:2 _q_n _3 -q_

= aiS(iC 1 _q[n )_()C2 _q_n)8(lC3- q_a)__ ai¢_(ic- qm ),

(5 - 43)

where, as before q_ is a particular value of _, and where equations (5-38) and (5-41) were used. Thus, by replacing ui(x) in

equation (5-37) by a trigonometric function proportional to eq_ .x, we obtained an expression for ¢pi(_) in terms of generalized
m ][

functions. The turbulent velocity ui(x) is, in fact similar to e q " , inasmuch as both quantities fluctuate as x varies. Moreover, one

can allow for the fact that ui(x) varies irregularly and that it may include a mean velocity, by using a series of trigonometric functions.

Thus, let

ui (x)= t 23ai(q_n) e iqm'x, (5-44)
m=i

where the qm and ai(q m) are random vectors (which may include regular components). Then, instead of equation (5-43), we have

or

qm2)] )]
a. qrn lim .......

(pi (IC)=-_-_-1..** L, ai,qm] e - ax, = -_- lCl_ m 1C3_ m '
m=l m=l

(5 - 45)

_i(IC)= _ai(qrn)_(ICl-q[n)_()C2-q_)8()C3 -q_n) -- _ai(qm)8(x:- qm).

m=l m=l

(5 - 46)

So, although the turbulent velocity ui(x) can be nonzero over all of x-space, its Fourier transform can exist as a generalized
function; it can be written as an infinite row of deltas with random coefficients. By virtue of equation (5-38), the operations of

differentiation, integration, multiplication, etc. can be applied to (Pi(K). That is, (pi(K)can be treated much like an ordinary function.
The same can be said about the Fourier transform of the turbulent pressure. It makes sense, therefore, to write the unaveraged

equations of fluid motion in spectral form by considering their Fourier transforms as generalized functions, even though those

transforms may not exist as ordinary functions.

5.2.2 Analysis of The Instantaneous Continuum Equations

The instantaneous equations (4-11) to (4-13) can be written, for gi = 0 (no buoyancy), as

+ v _ (5 - 47)
0t 3x k p 3x i _xk0x k '
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and

_t _X k _XkOX k

I3 _Xl_X 1 _xi_x k

(5 - 48)

(5 - 49)

where ~ over a quantity indicates a total instantaneous value (mean plus fluctuating), and where the quantity oe drops out of the set

of equations for gi = 0 (see equation following (3-22)).
In order to convert equations (5-47) to (5-49) to spectral form, we write the three following Fourier-transform pairs:

Ui (X) = _2 _)i (K)eiK'xd_ (5 - 50)

_)i(K) = (2_ J2 tli(x)e-ilc'Xdx;
(5-51)

(_(X) = J'_ _(K)eiK'IdK,
(5-52)

_.(K) = (2_ J_, * O(x)e-iK'Xdx;
(5-53)

'_(x) = _2 _/(l¢)eilCXdK, (5-54)

_/(i¢) = (_)3 _2"_(x)e-iK'Xdx" (5-55)

The K-space Fourier transforms in equations (5-50) to (5-55) are, of course, generalized functions, as discussed in the last section.
As in the case of averaged quantities, differentiation of an unaveraged quantity in x-space with respect to xk multiplies

its Fourier transform in K-space by ivy. For example, from equation (5-50), one obtains

or

O___k_i(x ) = f_. i)ck _i0¢)eiK'xd_ (5 - 56)

ilCk_)i(K) = & ___ 0--_-Ui(x) e-iK'Xdx"
(2,,j ,,

(5-57)

Finally, in order to take the Fourier-transforms of equations (5-47) to (5-49), one must consider the Fourier transforms of

the products _i_k and T_k" Thus, writing the Fourier transform of UiUk as _(1¢), one has

11



_ik(K) = _- I*** _i (x) _k (x)e-i_'x clx = ---Lf**(211_)3J-** _i(x)f**j..**_k (K')e i_'x dl{" e -i_'x dx

° 5i(x)_Pk(K:,)e-i(_-*c')'x dK, dx=.___l f" f_ - - -iO¢-_').x
(2_) 3 d-**J-** (2_) 3 j_**j_, ui(x)q)k(K")e dxdK'

= (x)e

where use was made of the relation

= I2 _k (lg)_i (1¢- _")dK',

Inasmuch as _ik0C) = _ki(K) (see first equality in eq. (5-58)), one could just as well write the alternate form

Similarly, the Fourier transform of 1"6k, call it _lk0¢), can be written as

(5- 58)

(5 - 58a)

I?**?pk (_) _'(K- lc')d_. (5 - 59)hk(it)

As shown by equations (5-56) and (5-57), differentiating a quantity in x-space by Xk multiplies its Fourier transform in I¢-space

by i_:k. Applying this to a product, that in equation (5-58) for example, shows that

(5 - 6O)
ilCk_ik= (_)3 I?**[O(hihk)/_Xk]e-iK'Xdx= I?**ilck_Pk(I¢')_Pi(IC--K')dlc"

thealternateform for _ik0c)(eq.(5-58a)),one obtainsusingor,

" 1 oo

iKk_ik= _ I-**[_(hkhi)/_Xk]e-tlc'xdx= I?**iKk_Pk(IC--K')(Pi(l_)dl_"
(5-60a)

The unaveraged equations (5-47) to (5-49) can now be written in spectral form by taking their Fourier transforms. Thus,

multiplying those equations through by [1/(2_)3]e "_:'xdx, integrating over x from -0- to +**, and replacing the subscripts i by j's, we

get

ot_ " fill " ')tpj(K- - !¢')d1¢' - P i_¢j_,(1¢) - Vlf2lpj (K),-._-_-¢,pj(lg) = --d_._ k q}k(K (5 - 61)

0_-__/(I_)= --I2iKkq)k (IZ')_(l_-_c')d_c'- mC 2_(K), (5- 62)

12



and

_ 1 l_2_.(K:)= I_o)Cj_k(ok(_:')_j(K:-K')d_:'
P

(5-63)

where _.2= K 1)¢ t and equations (5-50) to (5-60) were used. Combining equations (5-61) and (5-63) gives

a _ " - ':?_ / [= (ok(':%t(':- _')dK'- w 2 (Oj(K).
_'_j(K) = --IKk(Sjg K_j,_. *

(5-64)

The evolution equation for (Oj, when written in the form of (5-64), emphasizes the similarity of the first two terms on the
right side of equation (5-47); the spectral equivalents of those terms are both nonlinear inertia terms which are second degree in

(ok (K') and _ (K- K'). As was the case for the unaveraged equations in physical space, equation (5-64) does not require a closure

assumption for its solution. In fact, it is often used in discrete form for numerical solutions of turbulence (ref. 1).

Equations (5-62) and (5-64) can be written in terms of complex conjugates by using the relations

(Oj(K) = ((Oj)R(K)+i((Oj)I(K) ' _pr(K)=(_i)R(K)--i(_i)l(K), _(K) = _R(K)+i_,l(K),and _*(K)= _R(K)--i_,0¢), where the stars

designate complex conjugates, and the subscripts R and I refer respectively to real and imaginary parts. Thus, we get

and

0. ( ._-tpi (K) = --iK k _ie - 7 .o(pk (K')(O_(K-- l()dK'- VK2 tpi (K),

a-,
_'T (g)=iKkI?.o(O_(K')_*(K--K')dlc'--al¢2 _t*(l¢).

(5--65)

(5 -- 66)

Multiplying equation (5-64) by (O_(K) and equation (5-65) by _pj(K), we get, after adding the two equations,

KiKf o. - -* ~*
_[(O_ (K)(Oj (1¢)] = i)(k (Big----_)I_ tPj (K)gk (K')_t (K-- ")dr

_il_k (_}jt _:J_e_f°°- _:2 )J_,,. (o;(K)(ok(z')(ot(K-z')dK'-2vz2(o;(Ic)(oj(I¢)"

(5 - 67)

Equation (5-67) gives the evolution of the total (mean plus turbulent) spectral energy tensor (at a particular K). Contracting

the indices i andj we get, for the total spectral energy (at a particular K)

_'[(oi (I_)(Oi(K)]=_[((Pi)R(@i)R +((O,)I((Oi).]=[(O_(_)(O,(')I" .,_,".... -*
(5- 67a)

- (O; (K)(Ok(K")(Oi (K - K')]dK' - 2VK2(O; (K)(Oi (K)

Note that the spectral-pressure terms (those divided by _2)drop out of the contracted equation because of continuity (see

eqs. (4-10) and (5-57)). That is, the spectral pressure terms can transfer total (mean plus turbulent) energy between directional

components, but do not change the sum of the three directional components at any 1¢.Similarly, from equations (5-62), (5-66),

and (5-65), we get

_'[7(')70- -, (,)] = _t ;/2(,_ = -i_k I?=,[(ok (K")_,(K- #)_'' (,)--(p: (--')_" (r--,')_,(,)]d,- 2a_:2"2(,)} "(-)
(5 - 68)
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and

The presence of the integrals in equations (5-61) to (5-69) reveals that the Fourier components at each Icdepend nonlinearly

on Fourier components at every other point in wavenumber space. An important deduction from those equations is the triad nature

of the nonlinear interaction of the Fourier components. For instance, equation (5-64) shows that the evolution of the component _Pi

at wavevector I¢depends on components at wavevectors _' and I¢- x". That is, there is an interaction among components at those

three wavevectors. Equation (5-67) shows that the evolution of _i (c)_(x) also depends on the interaction among components
at the three wavevectors c, x', and 1¢- x'.

The last terms in equations (5-64), (5-65), (5-67), and (5-69), which are multiplied by vx 2, are viscous dissipation terms.

The presence ofK 2in those terms shows that the viscous dissipation occurs at higher wavenumbers than does the bulk of the activity.

Similar comments apply to the terms in equations (5-62), (5-66), (5-68), and (5-69) which are multiplied by ax: 2.Those terms cause

a reduction of activity by thermal conduction or thermal smearing. Note that equation (5-69) contains both thermal-smearing and

viscous-dissipation terms.
Although equations (5-61) to (5-69) have rather compact forms, they are general, applying to both homogeneous and

inhomogeneous turbulence. But since they are written in terms of total instantaneous quantities, it is hard to identify the various

turbulence processes. For instance, the nonlinear term in equation (5-64), besides containing spectral-transfer and directional-

transfer effects, may contain turbulence production by mean gradients. Thus, further interpretations are postponed to the next

section, where mean velocities are absent (or uniform), and the turbulence is homogeneous.
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5.3 HOMOGENEOUS TURBULENCE WITHOUT MEAN VELOCITY OR TEMPERATURE (SCALAR) GRADIENTS

A (statistically) homogeneous turbulence is defined as one in which averaged turbulence quantities are not functions of

position. For instance, for homogeneous turbulence

u iuj _:u iuj (x),

u i uiu k _ ui uju k (x)

and

ff_U i/_xj #ff_U i/3xj (X),

where x is the position vector. Similar statements apply to other averaged turbulence quantities in a homogeneous turbulence.

Homogeneous turbulence without mean gradients is attractive as an area of study because of its conceptual simplicity.
Production and diffusion terms, for example, are absent in the equations for that type of turbulence. The absence of those terms,

however, may not always be helpful for getting solutions. The presence of large mean-gradient and/or diffusion effects may, in fact,

be an advantage, since a solution will depend to a lesser extent on the difficult-to-determine nonlinear self-interaction terms. In this
section we are not interested in mitigating the effects of those terms. Rather we consider homogeneous turbulence without mean

gradients mainly as a vehicle for studying the nonlinear self-interact/on and/or dissipation effects.
First we will consider the basic equations for homogeneous turbulence without mean velocity or temperature gradients.

Then we will give some illustrative solutions. In most cases the analytical solutions considered will be of the simplest kind, in order

to avoid mathematical complexity. Somewhat more widely applicable numerical solutions will also be discussed where available

and appropriate.

5.3.1 Basic Equations

For homogeneous turbulence without mean velocity gradients, the averaged two-point flow equations in r-space (eqs. (4-

147) to (4-150) in the last chapter) simplify to

_.uiuj(r)+._rk[UiUjUk--UiUkUj)= ._'_-- .u-'_ +2V 3rk_rk,

uiuju k1_2u-_=" 2-- , ,

p 0rjBrj _rj0r k '

(5-70)

(5-7l)

and

I _2_-_ 22 ,UiUkUj (5 - 72)

P _ri_r i _ri_r k

The corresponding spectral equations in the 1c-space (eqs. (5-17) to (5-19)) become

_'_ (Pij(l¢)+ l_k ((Pijk --_ikj)= p (ilci_'j- il'_j_,_) -- 2VlC2(Pij,
(5-73)

_I i_2_,_= ifjl_kq)_jk, (5--74)
P

and

-ll(2_,j = _il_k_ikj.
P

(5-75)
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Combining equations (5-73) to (5-75), we get

_giJ (K) = - irk [ 8j£ -7_:J_:e ] 9i_k + i)ck ( 8il - KiKe_7) q)tkj - 2vg2 q)iJ"
(5 - 76)

One could, of course, obtain equations (5-70) to (5-76) directly from the instantaneous equations (5-47) and (5-49), and

from similar equations written at a point 1y with the subscript i replaced by j. The -'s over the instantaneous quantities would be
omitted, since me, an gradients are absent. So instead of starting with the general equations (4.145), (4-146), and (4.148), and then

simplifying the final two-point equations, one could start with the simpler equations for homogeneous turbulence without mean

gradients. Then, multiplying the unpdmed equations by u i, the primed equations by ui, using the fact that quantities at one point
are independent of the location of the other point, adding and space averaging the equations, letting 0/0x_ = 0/0r k and

O/x k = -O/_r k , and using the Fourier transforms given by equations (5-12), (5-13), and (5-20) to (5-22), one obtains equations (5-
70) to (5-76).

Equations (5-64), (5-62), and (5-65) to (5-69) become, for homogeneous turbulence without mean gradients,

_gj(r) =-irk(Sjt- )cJ_:tr2)j_**_['** 9k(#)gt(r-¢)dK'- wc 2 q)j(K),
(5- 77)

_t T(Ic)-- f?** ig:kq)k(l()T(K:-- I()dl(- 0a¢2 T(IC),
(5-78)

, . KiK t **

_'¢0i (K)=lKk(_i,- 7)_**q_(IC')q)_(K--1c')dlc'- vlc2q); (K),
(5 - 79)

_[q)_0c)gj(_:)] =_ igk(8je_ _:j_:e _f**

KiKt 0" * * • 2 *

+il(k(_it-----_--)_2t_,(K--lg')q)k(K')q)j(K)dK--2V_: 9i (1C)q)j(K),

0 [(q)i)R(CPi)R + (q)i)1 (q)i)l ] = I_0i(K)q)i (1C)I_[q)_ (K)q)i (IC)] = _"

------i_:k f_2[q)* (1C_Pk0C')q)i (" -- _')- q)i (K:)q): (_')q)* (" -- g")_K'-- 2W: 2 q)* (')q)i (K),

(5- 80)

(5 - 80a)

and

• oo • • * 1 _ * *

-Ca+

(5-82)
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Notethatequations(5-77)to(5-82)arethesameasthecorrespondingequationsin thelastsection,exceptthatthe-'s overthe
dependentvariableshavebeenomittedfor homogeneousturbulencewithoutmeanvelocityor temperaturegradients(see
eqs.(4-14)to (4-20)).

5.3.1.1 Equivalence of equations (5-76) and (5-80)._To show the equivalence of the subject equations we first relate

q0;0c ) {pj(lc) to _j0c). To that end, we write
-- 1 eRk/2 (5--83)

uiu](r ) = ui(x)uj(x + It')= RIR2R3' ]_Rk 12Ui(X)Uj (x + r)dx,

where the overbar desginates a space average and Rk is the spatial period in the k-direction. Space averages can, of course, be used

because the turbulence is homogeneous. Since the period is, at this point, finite, we represent ui by a Fourier series (finite Fourier

transform) (see, e.g., eq. (5-4)). Thus,

_! _ i21tX:kXk/R(k) (5--84)Ui(X) = _¢Pi)_ e
K

or

uJ (x+r)= _ (q0j)Kei2r_k(Xk+rk)/R(k) " (5-85)

K

Then equation (5-83) becomes

1 "Rk/2

ui(x)uj(x+r)='-------| ui(x ) _ t _ i2_k(xk+rk)tRck)dx
R1R2R3 l-Rk/2 K=-'**_q0j)lce

- -R /2 ** t \ i27tXk(xk+rk)/RCk)cix

R1R2R3 _=_-**

ic_( i2xx r IR k [Rkl2 ,i {_r]ei2_'KkxklR(k)dx
-- e k k ( )j 2.i__ j_1 £oj) _R k [

R1R2R3 = K

_[ \ iskrk fRk 12 u ,x,eiSkXkdx_S1_'S23 As_3 .= k%): J-R /2
$

where equations (5-7) and (5-7b) were used. Note that Ask is given by equation (5-7). Passing to the limit as Rk-'') *" (A_k"-) 0), and

using equation (5-10), one obtains
1 I'** ,,, tS_,_ is'r [** u.fx)e is'x (5-87)

ui(x)uj(x + r) = _ j_ vj, ,_ J-_ ,- dxds.

But, (5 - 88)
1 ** eiS.x * S

since, for Rk---) _', equation (5-84) becomes

ui(x) = j2 q0i(s)eiS'xds.

(5- 89)
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Substitutingequation(5-88)into(5-87)andchangingthedummyvariablefromsto_;onehas

ulna(r) = ui(x)uj(x +r)= f_(K)Cpj(K)e it'r d_ (5-90)

showing that (p_(K) _j (K) is the Fourier transform (from r-space to K-space) of u i u i (r). Since _j(K) is also the Fourier transform

of u i u i (r) (see eqs. (5-11) and (5-12)),

(Pij(K) = cp_(K:)gj (K). (5 - 91)

That is, 9ij(lc) in equation (5-76) is equal to tp_(K) (pj(K) in equation (5-80). The tensor ff_ (K) ffj (_:) is often written as _ (_)tpj (r),

where the overbar could represent, say, an ensemble average. However, the overbar does not seem to be strictly necessary because

9_(z) cpi(K ) is already the Fourier transform of a space-averaged quantity (eq. (5-90)).
Consider next the equivalence of the nonlinear terms in equations (5-76) and (5-80). To that end, we relate the tensor

tPtkj(g) in equation (5-76) to q)_(K- K")q)_(¢)gj(r) in equation (5-80). Note first that 9tkj0C) is the Fourier transform of

UtUkUi(r) (see eq. (5-21)), where the overbar again designates a space average. Then, carrying out a development similar to that
in the last paragraph,

Rkl2

1 _Rk / 2 U/(X) Uk (X)Uj(X + r)dxldx2dx3UtUkUi(r ) = ut(x)uk(x)uj(x + r) = R1R2R3

RnR2R 3 Rk/2 u/(x)uk(x) 9J) K

. _ e i2rogk(Xk +rk )IRtk)dx1 Rk/2 Ut(X)Uk (XX_0j)Ic
RIR2R3 -R k/2 _c=---_

= oo Rk/2
1 _ f UI (X)Uk (x)(Qj)ltei2mck (xk +rk ,' R(k) dx

RIR2R 3 z=_.**J-R k/2

= 1 _. (_;_ ei21trkrklR<k, fRk/2 u¢(x)uk(x)ei2rm_rk/R(k)dx.

RIR2R3 K=_--_**,J/K -I-Rk/2

(5 - 92)

Using equations (5-7) to (5-7b), and passing to the limit as Rk---) oo,

UeUkUi(r) = u/(X)Uk (x)uj(x +r)= _ _ 9j(s)e is'r/_ u_(x) Uk (x)eiS'xdxds

= (_)3 J_ tpj(K)ei_'r f_ u_(x)uk(x)eiK'r dxdr, (5-93)

= _ _0j (Ic)eilC'r_k (IC)dlC -- _ _0j (Ic)ei"r _ Q_ (iC')Q_ (lC- Ic')dlg'dlc

where _(_) was calculated from equation (5-58) (-'s omitted). Equation (5-93) shows that ___ (p_(_- K')q)_(_)_pj(K)d_' in

• r .... "

equation (5-80) is the Fourier transform (from r-space to K- space) of u_ u kuj (). Since 9 t _(_) m equauon (5-76) _salso the Founer

transform of U_UkU j ,

= 2.-., ""[** q);(_:- r'_ (_')tpj (_:)d_:'. (5 - 94)9ekj(!¢)
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Finally,werelateg)_ek0¢) in equation (5-76) to (p_(Ic)9 t (Ic - Ic')(pk (to') in equation (5-80). The Fourier transform of qu_ek

is, according to equation (5-22), u iu _ U_ (r). Carrying out a development similar to those in the last two paragraphs, with overbars

designating space averages,

l eR k/2

UiU_U_ (r) = ui(x)ut(x + r)uk(x + r) = -- J ui(x) ut(x + r)uk(x + r)dx
RIR2R 3 -Rk/2

f. _ _cei2axk (xk +rk)/g(k) dx= 1 Rk/2 Ui(X) (;_'k)
RIR2R 3 -Rk 12

Kei2mc k (Xk +rk ) / R(k)= 1 i'j.Rk/2 ui(x)(;ek)
dx

RIR2R 3 -Rk/2K=..,,

_ RIR2R31 K_IRk/2='-Rk '2Ui(X)(;ek)Kei2n_k(Xk+rk)/R<k)dx

1 _ /_. \ i2ggkrk/R(k ) ["Rk/2 . ./_.x_i2m_kXk/R(k)dx"

- RIR2R-'--"_ x___.. _& }xe J_Rk/2 ultx_e

Passing to the limit as Rk----)ooafler using equations (5-7) to (5-7b), we get

1 oo

uiu_u _ (r)= ui(x)ut(x + r)uk(x + r)= _ f__ _,k (s)eisr f_. ui(x)e is'xdx ds

= L _fk (K)eiK'rt4)_(K)dl( = _L (Pt(K- t')t'Pk(K")dlg'tP:(t)eilC'rdt

= ___ lj'__,cp_(t)Cpe(K_ i¢')(pk(t')dlC]eilc'rdlC, (5-95)

where _tk0¢) was obtained from equation (5-58) (-'s omitted). Equation (5-95) shows that f__qu_(Ic)gt(K- lc')_0k0c')d¢ in

equation (5-80) is the Fourier transform (from r-space to r-space) of uiu_u _ (r). Since q)_ek in equation (5-76) is also the Fourier
• t

transform of uiufu k ,

q_iek(t) = f__q_i (!C)9_( Ic- t )q)k (Ic')d • (5- 96)

Using equation (5-91), (5-94), and (5-96), one sees that equations (5-76) and (5-80) are equivalent, since all the terms in

those two equations are equivalent. The strategy for arriving at that conclusion was to show that spectral tensors in equation (5-80)
are Fourier transforms from r- to t-space of velocity-correlation tensors (see eqs. (5-90), (5-93), and (5-95)). It was already known

that that is the case for the spectral tensors in equation (5-76); that equation was derived by transforming the evolution equation for

uiu---_. from r- to t-space. That was not the case for equation (5-80), which was obtained by transforming from x- to t-space (rather

than from r- to t-space). Hence, the need for the development in the present section.
Because of the equivalence of equations (5-76) and (5-80), the latter, like the former, is an averaged equation and thus

requires a closure assumption. Note, however, that equation (5-80) could be closed deductively (without introducing additional

information) by calculating the _ from a numerical solution of the unaveraged equations (5-77) and/or (5-79).
The demonstration of the equivalence of equations (5-76) and (5-80) (at least, according to the present method), depends

on the homogeneity of the turbulence and the use of space averages in at least one direction. Also, developments similar to those
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in the present section can be used to show that equations (5-8 I) and (5-82) are Fourier transforms from r- to t-space of evolution
equations for temperature or temperature-velocity correlations.

5.3.1.2 Further discussion of the equations for homogeneous turbulence without mean gradients.--Consider fhst the

spectral-transfer term. It has already been shown in section 5.1.2.1 that for a general Navier-Stokes turbulence the spectral terms

associated with triple correlations can, except for the pressure terms, be considered as spectral-transfer functions or terms. However,

for homogeneous turbulence, the demonstration is much simpler. For that case O/0r k = _/Ox_: = - O/0x k .Then, in equation (5-70),

the term

(UiUjUk _ UiUkU'_) = _ Uiuiulc + _--_k UiUkUj

,,  (UiUk)
= UjUk -- +--W'7---, ui = f?.o Tij(K)emrdlC,igXk Oxk

(5 - 97)

' • • P

where Tij(1O is the Fourier transform of -_(uiuju k - UiUkUj)/_r k .

Then, for r = O,

,¢K, K=UjUk = =0 (5 - 98)

for homogeneous turbulence. Referring to equation (5-70_2)and letting r = 0 in that equaiton, we see that Tij, when...._.integratedover

all _ gives zero contribution to the rate of change of uiu j . It can, however, transfer spectral components of uiu j from one part
of wavenumber space to another. So we interpret Tii as a spectral transfer term associated with turbulence self-interaction. The term

.e t • ......

- uiuju k - UiUkU j in equaUon (5-70) is therefore the Founer transform from K- to r-space of a self-mteracUon spectral-

transfer term.

Some detail about the spectral transfer of turbulent activity (and about the other turbulence processes) is obtainable from

the evolution equation for 9_q)j (eq. (5-80)). l The spectral energy tensor 9_q_j is the Fourier transform from r- to t-space of the

turbulent-energy tensor uiu _ , and _ is the Fourier transform from x- to t-space of uj. Letting r = 0 in equation (5-90) shows that

q)_q)j gives spectral contributions to uiu j from various wavevector bands.

The spectral transfer term in equation (5-80) is

T0(K ) = ___ Pij(1_'K')dlg',

where

(5-99)

Pij (K, !¢ ) = ,[Kk_ i (K-- I¢ )¢s0j(K)q)k (K") -- l_kq) i (K)q)j(K -- K•)q)k (g:•)]. (5-100)

Equations (5-99) and (5-100) show that contributions from various wavevectors _' between .-.o to 4-.0 make up the total

turbulent transfer at _. In particular they show that the net transfer into a wavevector band at Ktakes place by the interaction of triads

of Fourier components at the wavevectors _, _', and _- _. That is a hallmark of the turbulence spectral-transfer process and is an

important deduction from the Navier-Stokes equations. But it only became evident through the Fourier analysis of the unaveraged

velocities ui(x) in those equations.

nOne should note that the discussion preceding section 5.3 was not strictly for turbulence, because the velocity components fii
and their Fourier transforms could include mean components. Thus, the terms in the equations discussed there, unlike those
considered in the present section, were not identified as turbulence terms.
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Byusingequation(5-60a)inplaceof(5-60)andomittingthe-'s forhomogeneousturbulence,wegetthealternateform

• • * * • *

Pij(IC,K )= l[Kk(Pk(K--l_)(pi (K)(p j(1D -- Kk(Pk (K--K')(P i (K)(pj(l_)]. (5-101)

Equation (5-101) becomes, on using continuity in the form 0oK - 1cK')q)k(1c- _") = 0 (see eqs. (4-21) and (5-36)),

K' " • * _¢k(Pk(X--K )Cpi(K)(pj(K)]. (5--102)PIP:, " "* 'K )(Pi (K)(pj (1¢)-

Interchanging _: and _ in equation (5-101), and noting that (pk(X - 1¢)- q)k(K-- !¢ ) and (pi(u:' - K) = (p_0¢- I¢') since

u is real, we get

P_j(K',_¢)= i[-W_k 0¢-_¢ )_ (_')(PjO¢)+_:k_k0¢-- _¢)'¢i O0'_j0¢)]. (5--103)

Comparison of equations (5-102) and (5-103) shows that

Pij (1¢,I¢') = -Pij (1¢', I¢). (5 - 104)

Thus, Pij is antisymmetric in x and g. That is a condition which must be satisfied by any expression (assumed or calculated)

for Pij. Another condition, obtained by letting I¢= It" in equation (5-104), is

Pij (1c,Ic) = 0. (5 - ]05)

That is, there is no spectral transfer between Fourier components (eddies) with the same wavevector. This result shows

that spectral transfer can take place only between wavevectors that, at least to some extent, are separated.
One can also get the spectral-transfer condition (5-98) from equation (5-104). Thus, using equation (5-104) in (5-99) and

integrating from I¢ = --_ to +**, there results

Since Ic and I¢' are dummy varibables in the integrals in equation (5-106), those variables can be interchanged without

changing the values of the integrals. Thus, equations (5-106) can be true only if

]i Tij(lC) dx: = 0,

showing again that Tij00 gives zero contribution to the rate of change of turbulent-velocity correlation uiu j , but it can transfer

turbulent spectral components of uiu j from one part of wavenumber space to another.

Terms in equations (5-81) and (5-82) analogous to Pij(x:, _) are, respectively,

S(x:, K') = -i[_: k (Pk(_)7( _:- K')y* (_:)- _:kCPk(K')y * (K:- _)?(_:)]

and

(5-107)

V i (IC, 1C•) = -i[_ ktpk (K')?( K- K')(p_ (K:)- _:k(Pk (K:')(p; (_:- _')7(_:)].

(5-108)

(5 - 109)
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By using developments similar to those for Pij(K, I¢') and Tij(I¢) in equations (5-99) to (5-107), one can show that

= -s(¢,,0 (5-11o)

and

(5-111)

For lg = I¢, equations (5-110) and (5-111) show that, like equation (5-105),

s(K,,¢)=vi( ,c) =0. (5 - 105a)

Then, letting

= s(g (5-112)

and

one obtains

X i(1¢) = f2 Vi (K, K')dK', (5 - 113)

f_,o W(lg)dl¢ = f_,. X i(!¢)d1¢ = O. (5 - 114)

Thus, W(I¢) and Xi(l¢) can be given interpretations which are.__atogous to that given for Tij(Ic). That is, W(I¢) gives zero_

contribution to the rate of change of turbulent temperature correlation zx, but it can transfer spectral components _1¢)Y*0¢)) of ¢x

from one part of wavenumber space to another. Similarly, Xi0¢) gives zero contribution to the rate of change of temperature-velocity

correlation "t'u"'_,but it can transfer spectral components y(Ic)q_(I¢) of _ii from one part of wavenumber space to another. 2
Consider next the turbulent spectral-pressure terms in equations (5-80) and ($-82). Those are the terms with 1¢z in the

denominator. Like the other inertia terms (the spectral-transfer terms), the spectral-pressure terms contain integrations over

wavenumber space from --**to +,o. Thus, the spectral-pressure components at I¢can be affected by turbulent activity at all parts of

wavenumber space. W__...edo not identify them as spectral-transfer terms because, unlike the latter, they can give contributions to the

rate of change of UiU j or of uiq;. The turbulent spectral-pressure terms drop out of the contracted equation (5-80a) because of

continuity, so that they make no contribution to the rate of change of q)_(_)_0¢). But at each K:they can transfer turbulent energy

among the three directional components of _0_. The spectral-pressure term in equation (5-82), however, does not seem to have

a clear physical significance, other than that it can contribute to the rate of change of ui% or of _(1¢)_0_0¢).

Finally, consider the turbulent-dissipation and turbulent thermal-smearing terms in equations (5-80) to (5-82). Those are

the terms multiplied by 1¢2, the turbulent-dissipation and turbulent thermal-smearing terms being additionally multiplied respec-
tively by v and or. They always act in a direction such that the turbulent quantities which evolve according to equations (5-80) to

(5-82) are brought closer to zero. The fact that the terms are multiplied by I¢2means that Fourier components at larger wavenumbers

(the smaller eddies) will be viscously dissipated or thermally smeared more effectively than will those at smaller wavenumbers (the

larger eddies). However, just how much more effectively depends on the shapes of the turbulent spectra, as will be seen later? To

illustrate the turbulence processes and turbulence quantities, we will next obtain solutions of the continuum equations for several
solvable cases.

n

2Note, however, that although all of equations (5-104) to (5-114) are true, zui (proportional to the turbulent heat transfer) is zero

in the present case where mean gradients are absent. The same can be said about uiu j for i ;e j (see section__4.3.1.1). (JSalr, that
• . o it . ,

the corresponding spectral quantmes YcPi and (Pi(Pj for t ;e j are not zero.) Spectral transfer related to xu i and to uiu j for
i ;ej foreases wber_mean gradients are not absent will be consideredin section 5.3.

3 nAnanalogous situationoccurs forthe transmission of soundina gas. The shotaerhigher-frequencywaves tend tobe attenuatedmore rapidly by viscousdissipatio
(andby thermal smearing)than the longer lower-frequency ones.
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5.3.2IllustrativeSolutions of the Basic Equations

Since we are considering a homogeneous turbulent field without mean gradients or external forces, the turbulence will

decay with time, no energy being added to the system. Thus we have an initial-value problem for which, in lieu of boundary

conditions, we specify statistical uniformity.
5.3.2.1 Low turbulence Reynolds number.--The simplest analytical solution of the equations for homogeneous turbulence

is that for low Reynolds numbers. Low Reynolds-number turbulence is identified as weak turbulence, the Reynolds number being

proportional to a ratio of inertia to viscous forces. It should occur in the final period of decay. The solution might be used to study
to some extent the viscous dissipation, that being the only turbulence process accounted for in the analysis.

For homogeneous turbulence without mean gradients the instantaneous equations (5-47) and (5-49) become, respectively,

_U__._Li= Cq(UiUk) 1 20 +V _2ui

Ot OXk p t)X i ()XkC)Xk

(5 - 115)

and

32° 02(uiuk) (5-116)

0xt0x _ 3xi0x k

where the -' s have been omitted beacuse mean quantities are zero or uniform. Examination of equations (5-115) and (5-116) shows

that the pressure term in equation (5-115) and the first term on the right side of that equation are both nonlinear and second-order
in u. Thus, as u becomes small, the nonlinear terms in equation (5-115) approach zero faster than the viscous dissipation term, which

is first-order in u. Then, for weak turbulence, equations (5-115), (5-77), (5-76), and (5-80) become, respectively,

(5-117)

_t _j(lg) = --VK2tpj(K),
(5 -- 118)

0
(It) = -2VK2q) ij(lg),q)ij

(5-119)

and

(5 - 119a)

Neglecting nonlinear terms at low Reynolds number has resulted in the closed averaged equations (5-119) and (5-119a). (The

unaveraged equations from which (5-117) and (5-118) were obtained were, of course already closed.) As shown in section 5.3.1.1,

the equations from which (5-119) and (5-119a) were obtained are equivalent, and thus so are equations (5-119) and (5-119a).

Equations (5-118) to (5-119a) can be solved to give

9j(K,t) = t,pj(!¢.,0)e -v_:2t (5 - 120)

and

q)ij (_ t)= [tp_ (_t)_j(_ t)] = (Pij(_ 0)e-2V_:2t = [q)_(1¢.,0)(pj (1(, 0)]e -2vr2t .
(5-121)
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-----7
Equations (5-120) and (5-121) show that Fourier components ofuj (x, t) and of uiu j (r, t) are attenuated strongly as (_)

or t becomes large. That attenuation is produced by the viscous dissipation terms in equations (5-118) and (5-119), both of which

are multiplied by 1(2..Thus, the terms 8qV0t and 0g/_t in those equations tend to bring 9i and % close to zero at large g or t. As

a result, with increasing time the turbulent activity (energy forj = i) shifts to lower wavenumbers, or to larger eddy sizes. The physical

interpretation of this shift is that the smaller eddies die out faster than the larger ones because of the larger velocity gradients (larger

shear stresses) between the smaller eddies. The essence of the turbulence dissipation is that it always tends to bring the turbulence

activity closer to zero, and that it affects mainly the smaller eddies.

Consider next an illustrative solution for the two-point velocity correlation. To simplify the problem, we look only at the
"""'7

contracted quantity UiU i , a scalar.

Using equation (5-121) in (5-11), we get

u_.'(r) = I2A1( 2 cos K. re -2wc2t dl_, (5 - 122)

where we have replaced e ix'r by cos x.r, since I?i sin K- r e -2 w2t dI¢= 0. Also, continuing to work toward aone-dimensional scalar

0')7) 0)solution, we have let t0ii(_, 0)= Ak"2.Introducing spherical coordinates -- cos q_sin0, = sin9 sin0,and

(r3) (r) K ! 1( 1( 2 1(
= cos 0, one obtains _.r = gr. Then, integrating over all directions in x-space, equation (5-122) becomes

1(3 1(

rx r2x

uiu_(r't) = I; A1(2 c°s(1(r)e-2V_Jt Jo JO 1(_ sin 0dqxt0dg,

or

u_(r, t) = 4gAit K 4 COS rice -2vr2 d_:.

(5-123)

Carrying out the integration in equation (5-123) (see, e.g., ref. 14) results in

uiu--'_"(r,t) = --3=3/2 (2Vt) -lr2+ 1-_(2Vt) -2 r4 ] e-rz/(Svt)2 L

or, evaluating A in terms of uiu"-"_ (0, to) and to, where to is an initial time, we get 4

t" "x-512/"

uiu_(r, t)= u_-'(0, t0)/_0 J _1---

r 2 r4 _-ri/(Svt)

2Vt + 48V2t 2 )e

(5 - 124)

(5 - 125)

Equation (5-125) satisfies the weak-turbulence equation

uiu_(r, t)

0t

22 ,
= 2v uiui(r, t), (5-126)

_rk_r k

4A more general expression for the two-point velocity correlation in the final period has been obtained by Batchelor and Proudman (ref. 15, eq. (7-7)).
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whichisobtained from equation (5-70). For the present case, where uiu"-_is a function only of r and t, equation (5-126) becomes 5

a_(r,t) = 2V a2_(r't), (5-127)
{)t _.2

Equation (5-125) shows thatj ust as _0iiwas strongly attenuated as 1<increases, so ui u-"-_is strongly attenuated with increasing

r, as indicated by the negative argument of the exponential. That may seem surprising because at large r, where length scales are

large, the viscous effects tend to be small. However, the fact that t appears in the denominator of the argument of the exponential

means that uiu--'-_._ decreases less rapidly with time at large r in the region of smaller viscous effects. That is, of course, as it should
be. Perhaps the attenuation of u iu'''_._with increasing r is best explained by a physical argument. Thus, since a turbulent velocity tends
to be a random function of position, the fluid at a point x will, so to speak, lose touch with that at x + r as r increases, so that

the correlation between ui and u_ will decrease with increasing r.
"--'7

One can define characteristic length scales for UiU i (r) as

Z,2 = 2u_'_(O, t)

'
(5 - 128)

and

I? _(r,t)dr

L(t) =' _(0,t)
(5-129)

where Z, is a microscale, a measure of the size of the small eddies of the turbulence, and L is a macroscale, a me..._.__ureof the size

of the energy-containing eddies. The former of these is obtained by inscribing a parabola in the curve for uiu _ (r) versus r at
r = 0. The microscale k is then the value of r where the parabola intersects the r axis. When uiu---_-'(r,t) is given by equa-

tion (5-125), where _ (0,to)(t/to) -5/2 = u i u'_._(0,t), we have X/_vt = 2a/2-_ and L/-f_ = 0! The perhaps unexpected value

for L/a/-_ means that uiu"'-_ must go negative for some values of r, as confirmed in figure 5-1. The value of zero calculated for

L means, of course, that the definition of L given by equation (5-128) is not realistic when uiu-'_."goes appreciably negative for

some values of r. Possibly a better definition for the macroscale would be

So 'r')l*
• tUiUi(0, )

(5 - 129a)

For uiu-'-_ given by equation (5-125), we find L'/'A = 2.34 for all times in the final period.

5The equality of a 2 u_i/ork ork and a 2 u_/0r 2 for u iu-"_= u i u-"-_.:(r,t) can be shown as follows: First, note that

au--i_t(r,t ) or au-_ a(r/r/) 1/2 au--_t rt ort au-'_t rt 8/k =a_ rk .Tben,

"_ -u-_tCr't) = or orl_'= or _X --TT_ =TT or r

=uiu; -r'_ or-k +r-I or2 ' 'L r'rk r) _" ar"_)rk{)r k ui_ r dr r 2

x i to (r,0,_) coordinates where, for spherical symmetry, _)2/aXkaXk is replaced by (l/r_)(a/or)(r2a/or); u iu _ is a function of r i {or of r for spherical symmetry),

not of xi.)
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Onemight ask how there could be a negative correlation between ui and u i . Evidently the negative and oscillating
correlations shown in figure 5-1 might be obtained when there is some nonrandom (possibly periodic) structure in a flow

superimposed on random turbulent flow that tends to make the correlation go to zero at large r. Incidentally, there is nothing unusual
about correlations in turbulent flow which go negative and/or oscillate (see, e.g., fig. 4-16).

5.3.2.2 Turbulence at various times before the final period of decay.--Unless the turbulence level is very low, as in the

final period of decay (or the decay times are very short (see section 5.3.2.1)), the inertial or spectral-transfer effects will not be

negligible (Tij* 0), and so we would like to be able to take them into account in some way. Alarge namber of proposals for calculating
the spectral transfer have been given, including those of Heisenberg, Kovasznay, and Kraichman, to name a few (refs. 16 to 18).
The number of proposals for calculating the spectral transfer effects appears, in fact, to approach the number of workers in the field.

Reviews of the proposals are given, for instance, in references 4, 19, and 20. Here we will consider a simple deductive approach

which is essentially aperturbation on the solution for the final period of decay considered in the last section. That is by far the simplest

deductive approach and will be sufficient for our purpose, which is to illustrate spectral transfer by a comparatively simple solution.
We consider a correlation-term discard closure. In using that (systematic) procedure, the infinite set of multipoint

correlation equations is made determinate by neglecting the highest-order terms in the highest-order equations considered (refs. 21

and 22). The procedure can be shown to be equivalent to a formally exact expansion in powers of Reynolds number (or of time)

(refs. 23 and 24). It has been speculated that the scheme may be divergent and may give negative spectral energies (refs. 10 and 25),

although the results in references 21 and 22 showed no such tendencies. 6 Even though the expansion may be divergent, the truncated

series should give a reasonable approximation as an asymptotic expansion (ref. 24). That may be the saving feature of the present
scheme as well as of other approximations.7 A more serious problem might be that the calculations are likely to become hopelessly

complicated (or impossible) if higher Reynolds-number turbulence is to be represented.
Several other schemes, such as the cumulant-discard closure and the direct-interaction approximation, which are

essentially partial summations of the expansion in powers of Reynolds number (ref. 23), have been proposed. Both of those are much

more complex than the method considered here. Although at least the latter of those schemes appears to give some realistic results,

the problem in their justification is that there seems to be no way of knowing whether the additional terms retained (to all orders

in Reynolds number) are more important than those still neglected. In this connection, note that although cumulant-discard

approximations retain terms of all orders in Reynolds number or time, the domains of validity of the cumulant-discard

approximations and the simpler power-series truncations (correlation-term discard schemes) are apparently the same (small

Reynolds number or small time (refs. 23 and 24)).
Consider fn'st the two-point correlation equations--equations that involve product mean values or correlations between

velocities or between velocities and pressures at two points. Those equations could be obtained by simplification of equa-

tions (4-147), (4-149), and (4-150) in the last chapter, but it may be instructive to obtain them directly from the Navier-Stokes

equations.
The incompressible Navier-Stokes or momentum equations written for the points P and P' separated by the vector r are

.... c)2ui_U i t c)(UiUk)= 1 30 ÷V--_ (5--130)

8t 8Xk 9 _X i _Xk_X k

and

+ v
i3t _xi_ 0 _x] _xi_xl, '

(5-131)

6perhapsit is too muchtoexpect an approximate(wancated) representationto begood(e.g., that it producespositiveeaergy) atall Reynolds numbers,
times, andwavenumbers.(Ofcourse,thewidertherangeof applicability,thebetter.) A morerealistic• xpectalion mightbe thatitbegood forlimitedhinges ofthose
parameters.Forexample, it seems unreasonableto discarda representationsolelybecause theenergy goes negativefora rangeof wavenumbersat largelimes. It
maybe perfectlysatisfactory at earlier times.(Notethat Newtonianmechanicshasnotbeenthrown outbecauseit breaksdownasthe speedof light is approached!)

TOther,moresophisticatedapproximations, appear alsotoworkbecausethey are kindsof asymptoticexpansions.For example,higher-order expansions
related to the direct-interactionapproximation appear to give less reasonableresults thanthose of lower-order(refs. 24 and 26).
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where,asusual,thesubscripts can take on the values 1, 2, or 3, and a repeated subscript in a term indicates a summation. The

quantifies ui and u i are instantaneous velocity components, xi is a space coordinate, t is the time, p is the density, v is the kinematic
viscosity, and 0 is the instantaneous mechanical pressure (see eq. (3-14)). Multiplying the first equation by u i and the second by

ui, adding, and taking space averages, result in

---7 1 (O_jj Oo_ui'_ ( O2uiu'---_ O2u_ ]

_t +_--'_ktuiujuk)+_--'_-U tuiujuk) .... +"W-7-', +V ----

(5 - 132)

where the fact that quantities at x i are independent of x i and quantities at x i are independent of xi was used. Equation (5-132)

can be written as

Ouiu---_ _ 1 / O°_ui _-_ 1+ 2v _2 u_3t ÷ (uiuiuk - uiuiuk) = --Tt" _ j _'i ) _l'k _l'k

(5 - 133)

where the relations (_f0xi) = "-(O/_l'i) and (_/_ x_) = (_/Ori) were used, and the correlations are functions only of r and t. Equa-

tion (5-133) was first obtained by Kfi-mrln and Howarth (ref. 27). It is desirable to write equation (5-133) in spectral form in order

to reduce it to an ordinary differential equation and because of the physical significance of spectral quantities. For this purpose we

use the three-dimensional Fourier transforms (from r- to It-space):

uiui(r ) = I___,,q)ij(lc)ei_'rdlc (5 - 134)

and

UiUkUi(r ) = I_ q)ikj(lc)eiWrdK (5 -- 135)

Ou i (r) = I_, _,j (lc)e ilc'rdlC
(5 - 136)

where !c isa wavevector and dlc= dKtd_2 dlc3. The magnitude of Ic has the dimension 1/length and can be considered to be the

reciprocal of an eddy size. From equation (5-135)

UiUkUi(-r) = I_ q)ikj (K)e-ilc'rdlC = I_ (Pikj (-Ic)e-ilc'rdlc

where the last step can be seen more clearly by writing the inverse transform. Interchanging the subscripts i and j and then

interchanging the points P and P" give

Similarly

uiui(r)u_(r) = UjUkU_(-r) = I_. q)jki(-lc)eiWrdK.

uio'(r ) = o-u_ (-r) = _'i (-K)etlc'rdlc"

(5 - 135a)

(5- 136a)

Substituting equations (5-134) to (5-136a) into equation (5-133) gives

dq)iJ _-iKk [q)jki (--1c)- (Pikj]= -_ (i_cj_'i (--lC)- ilci_j) -- 2VlC2_ijdt

(5 - 137)
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where the functional designations (_) are omitted for brevity. The tensor equation (5-137) becomes a scalar equation by contraction

of the indices i and j. Thus,

dq)ii F 2vlg2q)ii = ilCkq_iki - il_kq_iki(--_). (5 - 138)
dt

The pressure terms drop out of equation (5-138) because of the continuity relation 0u i /0x i = 0u_ /0x i = 0 (see eq. (5-133)).

The terms on the right side of equation (5-138) are collectively proportional to what is known as the energy-transfer term.

They account for the transfer of energy from one wavenumber to another or from one eddy size to another, but their total contribution

to d uiui/dt is zero (see section 5.3.1.2). Equation (5-138) applies to homogeneous as well as to isotropic turbulence. However,

in order to obtain a solution an expression for the transfer or inertia term on the right side must be obtained. _ and Howarth

neglected that term and obtained a solution applicable in the final period of decay (ref. 27). In the present investigation it is proposed
to obtain an expression for the transfer term applicable at times before the final period from the three-point correlation or spectral

equations. To obtain the three-point equation, write the Navier-Stokes equation at the points P, 1y, and ly' separated by the vectors
r and r'. The vector configuration is shown in figure 5-2. The first two equations are the same as equations (5-130) and (5-13 l),

with the dummy subscripts k replaced by £. The third equation is

03u_ .i.__._(u_u_,)= 1 030" 032u_.... + v-_. (5 - 139)
03t 03x7 p 0x_ 03x703x7

#

Multiplying the first equation by uiu_the second by uiu _, and the third by uiu j , adding the three equations, and taking space

averages, result in

03 , n _ . : ,, 03 , ,, , 03 , ,, ,,=_1103_ + 030'UiU_ 030"UiUj]

03tu_ujuk+03x,U'U'UkU<+_-_,uiuju_u_+T-x_u_uju_u' pC _x, 03xi ' 03x_)

¢032 032UiUiU 032
' 03x 0x +

(5-140)

Equation (5-140) can be written in terms of the independent variables r and r' as

0 , ,, ,, 1( 03 , ,, 03 , ,, 03 , ,,

03 ' " _ • : " 03 ' " 03 UiUiU_U 7 +_-ffUiUjUkU t =----|-W---OUjUk ----_-TOU:Uk +--0 UiUk03tuiUjUk--_rt UlUjUkUt-_ "uiujukuf+ 03"-_'tt p_, ctri t)ri J _l'j

+go"uiuiJ+ 2,,[ _-7o_
'"032UiUjUk _- ____

÷ 03r_Or_ ' ' "• J
(5-141)

Where the following relations were used:

03 0

03x__r_
03 03 03 03 03

= 03r_-_' _ = 03r< Or_"
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In order to convert equation (5-141) to spectral form, one can define the following six-dimensional Fourier transforms:

(5 - 142)

uiu,ui(r)u_(r' ) = _,. f___ [3i_jk(Ic, K')ei0C'r+lc"r')dl_:hc ', (5-143)

Oui(r)u_ (r') = ___0f___ ajk (g, lC')ei0C'r+_"r')dla:hc '. (5-144)

By using the method for obtaining equation (5-135a) the following relations result from equations (5-143) and (5-144):

uiu}(r)ui(r)u_(r,) = ujutu[(_r)u_(r,_ r) = f_. ___l_jgik (-K- _:' !c') ei(_'r+'"r')d_lK: ', (5-143a)

uiu](r)u_(r,)u_,(r,) = UkUeU_(_r')ui'(r_ r') = j'_. f_.l]k,ij(--K-- K',lC) ei("r+'"r')dmSg ', (5-143b)

where the points P and P' were interchanged to obtain equation (5-143a). For obtaining (5-143b), P is replaced by Iy, P" is replaced

by 1y', and Iy' is replaced by P. Similarly,

= _,. f_. e dK de, (5-144a)uio'(r)u_(r' ) o'u_(-r)u[(r'-r)= Otik(_lc_lC,,_ ) i(lc,r+lc'-r')

and

uiu i(r)O"(r')= Ou_(-r)u j"(r - r')= j'._ f._, Otij(-IC - lC', tc) ei(_'r+_"r')dlc die'.

Substituting the preceeding relations into equation (5-141) gives

(5 - 145)

d_.. + 2v(g:2 + K,_:_ + g:'2) [_ijk = [i(g l + _:_)_iljk -ig:e_j,ik( -g:- IC',lg')--iK_keij(--g:-- IC',If)]dt ok

-p[-i(_: i + g:_)CXjk+ i_:j_ik(-IC- IC',It")+ iK:_ij (-tO- IC',lC)].
(5 -- 146)

Equation (5-146) agrees with equation (2.11) in reference 28.
The expression in the first bracket on the fight side of equation (5-146) can be interpreted as a transfer term similar to that

on the right side of equation (5-138). Using an argument similar to that given for equation (5-138) (see section 5.3.1.2), one can obtain

an expression for the quadruple correlation terms in equation (5-141) for r and r" = 0 by allowing the points x i, x_, and x_' in

equations (5-130), (5-131), and (5-139) to coincide. Then the terms involving quadruple correlations become

o( ,uj)+ o(uku,)u,uju Ouj
UjUk _)X"""_ "+"uiuk _X""_" _X, : _X, U_cUiUk_--'_'g+ uguiuj _X'--"_= _---_g(uiujukO') : 0, (5-- 147)

where the conditions of homogeneity and continuity were used. From equation (5-143) for r = r' =0, and equation (5-147),

(5 - 148)
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where the expression in the first bracket in equation (5-146) was set equal to [l_ijk]. Thus [15ijk]gives zero total contribution to

d uiuj u k/dt. However it can alter the distribution in wavenumber space of contributions to uiuj Uk • It appears that similar transfer

terms occur in all higher-order equations.

The tensor equation (5-146) can be converted to a scalar equation by contraction of the indexes i and j and inner

multiplication by r_:

_tt (1Ck_iik)+ 2V( IC2+ 1Ctg_ + 1C'2) ICk _iik = i_k(Kt + g_)_itik -ig_kgt_itik (-1_- K', K")- iK kK_klii(--l_-- K",IC)

-- _[--ilCk(1C i + K_)0_ik + iKkgi0_ik(--K- K',IC')+ iKkg_(gii(--IC-- K",K)]. (5 - 149)

To obtain a relation between the terms on the right side of equation (5-149) which are derived from the quadruple correlation terms

and from the pressure terms in equation (5-141), take the divergence of the Navier-Stokes equation and combine the result with the

continuity equation to give

1 _20 02(UeUm)

p _x_ _x t _x t _x m
(5 - 150)

Multiplying equation (5-150) by u_ui_, taking space averages, and writing the resulting equation in terms of the independent

variables r and r', give

UtUmUiU k UtUmUiUk _ U_UmUiUk'" "" "
p_, 0rt0rt +2 _.t_ _ _ 3r_r_ J _rrn3r _ _rm0r _ _rm_ t 3r_3r_

(5-151)

The Fourier transform of equation (5-151) is

or

-_(_2 + 2g:eg_ ÷ g:'2)_ik = (IC,g:m + g:_Km ÷ Keg:m ÷ _:_:m)13emik

----OLikp = 1C2 + 2_:t_:_ +_:,2 [_emik" (5--152)

Equation (5-152) can be used to eliminate the quantities aik, O_tk(-_-l¢', g"), etc., from equation (5-149). In order to solve equations
(5-138), (5-149), and (5-152) simultaneously a relation between _iik and ¢,Pikiis required. Letting r'=0 in equation (5-142) and

comparing the result with equation (5-135) shows that

_iki (IC) = _?,.[_iik (11_K") d_¢'. (5 - 153)

The set of equations (5-138), (5-149), (5-152), and (5-153) is still not determinate inasmuch as there are more unknowns

than equations. It is proposed to obtain a solution applicable at times before the final period, as well as during the final period of

decay, by neglecting the terms in equations (5-149) and (5-152) corresponding to quadruple correlation terms. Corresponding to

the case of the final period, where a solution was obtained by neglecting the triple correlation terms in the two-point equation, it

should be possible to obtain a solution for times before the final period by neglecting the quadruple correlation terms in the three-

point equations. If a solution applicable at still earlier times were desired it would be necessary to consider four or five point

equations. In each case the set of equations would be made determinate by neglecting terms containing the highest-order
correlations.
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Equation(5-152)showsthatiftermscontainingquadruplecorrelationsareneglected,thenthetermscontainingpressure
correlationsmustalsobeneglected.Thus,neglectingallthetermsontherightsideofequation(5-149),theequationcanbeintegrated
betweento andt togive

Kkl_ii k = lgk (l_iik)0 exp[--2V(t -- t0)(K_2 "k K'_" COS 0 "k K'2 )] ,
(5 - 154)

where (13iik)0is the value of 13i_ at t = to (an initial time or virtual origin), and 0 is the angle between _: and g'. Note that (l_ijk)0also

equals _ for small values of K and lc' at various times, so that 13ijkhas a stationary form at small values of _ and _', at least for
times when the quadruple correlations are negligible. Substitution of equations (5-154) and (5-153), in equation (5-138) results in

dq)ii + 2v_2tPii = $o2_ig:k [13iik_ _liik (_l¢.,--g:')]0K'2I_ll exp[-2v(t- t0)(g:2 + k'_'cos 0 + 1_'2)] d(cos 0)1 dl_',
dt

(5 - 155)

where dK" =d_q' d_ 2" d_ 3" is written in terms of _' and 0 as - 2_'2d (cos0)d_'.

In order to make further calculations it is necessary to assume a relation which gives [13iik- _iik (-Ig,--lq')]0 as a function

of • and Ic'. The theory itself will not, of course, supply this relation; it gives only the state of the turbulence at various times when

the initial state is known. The relation assumed here is

il(k[_ii k -- _iik (--I¢-,--1(')]0 =--_0(KmK "n --KnK'm),
(5 - 156)

where 130is a constant determined by the initial conditions, so that its value will in general depend on m and n. As will be seen

later, this expression gives a transfer term which satisfies equation (5-98). Here we choose m = 4 and n = 6. Later we will investigate
the effect of the choices for m and n on some of the results. The negative sign is placed in front of _ in order to make the transfer

of energy from small to large wavenumbers for positive values of 130.By virtue of equations (5-155) and (5-156) one can write

tpi i = ¢_0ii(K).

Energy spectrum and spectral transfer. Substituting equation (5-156) in (5-155), writing tpii in terms of the energy

spectrum function,

E(g:) = 2ng:2_ii (_:) (5 - 157)

(ref. 4), and carrying out the integration with respect to 0 m equation (5-155), result in

dE(_:)/dt + 2vK2E(K) = T(_c), (5 - 158)

where T(K) is the energy transfer term and is given by

2v(F- t0)
(5 - 159)

On multiplying each term in equation (5-158) by dr it is seen that the first term represents the rate of change of energy in the
wavenumber band dg, the second term is the energy dissipated within the band, and T(g) is the net energy transferred into the band.

Equation (5-159) can also be given an interesting physical interpretation. Letting the integrand in the equation be P(g, g3,

we have

T(_:) = foP(_z, lc')dK: '. (5 -160)

Multiplying both sides of equation (5-160) by dr,, we note that, as in equation (5-158), T(g)dg is the the net energy flowing into
the wavenmuber band d_: from all other wavenumbers. The quantity P(_, k")d_'d_: is the energy flowing from the wavenumber

band dg' into the band d_.It might be called the distribution function for contributions to T(_) from various wavenumbers or eddy

sizes.
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Carrying out the integration indicated in equation (5-159), that is, summing up the contributions to T(_:)from all

wavenumber bands, gives

I !_ 6 lC8 1C10 lC 12 ]T(_:)= (rc/2)112 I]0exp[-(3/2)_:2v(t-t0)25------_ 105(t_t0)9'2 _'45(t_t0)7'219(t_t0)5/2 3(t_t0)312 . (5-161)

If we integrate equation (5-161) over all wavenumbers we find that

_(K) d_c = 0, (5 - 162)

indicating that the expression for T(_) satisfies equation (5-98). This is a consequence of the antisymmetry of equation (5-156).

For obtaining the energy spectrum function E, equation (5-158) can be written in integral form as

E = exp[-2v_2(t- to)] j'exp[2_z2v(t- to)lT dt + C(_c)exp[-2v_z2(t- t0)], (5-163)

where T is given by equation (5-161). We let the constant of integration be given by

C(1Q = J01{4/3n. (5 - 164)

There is some theoretical basis for equation (5-164) (ref. 15), but C(K) for a particular flow may depend on how the turbulence is

generated (ref. 29).

Carrying out the integration indicated in equation (5-163) and substituting equation (5-164) result in the following

expression for the energy spectrum function:

E = _exp[-2vlc2(t- to)]
f 15-q_ g6 12-4_ _:8 7x/2 _:I0nl/2130256vexp[-(3tZ)_z2v(t-t0) v 7/2 (t-to) 7/2 v 5/2 (t-to) 5/2 '3v 3'2 (t-to) 3'2

where

÷3vl/2 (t_ to)l/2 --_lSF v(t 2 (5-165)

F(_) =e-_2_e x2 dx,

(t to)
ta) = !{ , .
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Valuesof F(o_) are tabulated in reference 30. The first term on the right side of equation (5-165) is the usual expression for E in

the final period of decay. The last term is the contribution to E due to energy transfer.
The expression for the energy decay is obtained from equation (5-134) by setting r = 0, j = i, dK =-2rc_ "2 d (cos 0) dr,, and

E = 2_'k2cPii. Thus

UiUi = fE dK. (5-166)

2 J0

Substituting equation (5-165) in (5-166) and performing the integration, that is, summing up the contributions to the energy from
all wavenumbers results in the following expression for the energy decay law:

uiui _ J0 v-5/2(t_t0) -5/2 8 -7+0.2296130v-(t-to) •
2 32(2g) 1/2

(5 - 167)

The last term in equation (5-165) was integrated by expanding it in a series. For large times the last term in equation (5-167) becomes

negligible, and the equation reduces to the well-known -5/2 power decay law for the final period. If higher-order correlation

equations were considered in the analysis, that is, if the quadruple correlations were not neglected, it appears that more terms in

higher powers of (t- to) would be added to equation (5-167). 8
Figure 5-3 shows our theoretical dimensionless energy-spectrum function E* = J01/3E/v 8/3plotted against dimensionless

wavenumber K* = J01/3g/v 2/3 for various dimensionless times t* = v7/3t/J02/3. The curves were calculated from equation (5-165)

after converting it to dimensionless form.
It _¢

The values of the parameters 130= v5130 / J0 and to = v 7 / 3t 0 / J02 / 3, which depend oninitial conditions, are determined

from decay data for grid-generated turbulence reported in reference 32 (see fig. 5-4). The Reynolds number MU/v is 950, where
M is the mesh size and U is the mean velocity of the fluid flowing through the grid. The corresponding microscale Reynolds number

R_. = u---i_i1/2 _./(3v) is between 5 and 8, where _. is the microscale (dissipation length) (ref. 4). The time t in the theory is taken

to be t = x/U, where x is the distance downstream from the grid, and to is the virtual origin of the turbulence (the time at which

the turbulence intensity u_./3 would become infinite if equation (5-167) applied for all times > to). Note that to corresponds to

x0 (see fig. 5-4).
The unusual shape of the curve for t* = 0 may be due to the fact that the theory is not accurate for a time that early (see

fig. 5-4). The wavenumber g has the dimension I/length and as mentioned earlier, can be considered as the reciprocal of an eddy

size. Large wavenumbers correspond to small eddies and small wavenumbers, to large eddies. Equation (5-166) shows that E

represents the distribution of contributions to the total energy from various wavenumbers or eddy sizes. As time increases, the bulk

of the energy moves to smaller wavenumbers or to larger eddies. The high velocity gradients and, consequently, high shear stresses
occurring in the smaller eddies cause them to dissipate more rapidly than the large ones. The viscous dissipation thus produces a

sink for the energy at the higher wavenumbers.
Interaction between spectral energy transfer and dissipation. Figure 5-5 gives a comparison between the spectra

obtained from equation (5-165) and those for the final period obtained by retaining only the fast two terms in equation (5-165). The
difference between the curves is, of course, caused by the transfer of energy from low wavenumbers to higher ones. The energy

transfer tends to fill the sink produced by viscous dissipation at the higher wave numbers. As a result the slopes on the high

wavenumber sides of the spectra are more gradual than they would be in the absence of energy transfer. But at later times, when

inertia effects become small, the spectra assume a more or less symmetrical shape.
Thus the function of the inertia terms in the equations is to excite the higher wavenumber or small-eddy regions of the

spectrum by transferring energy into those regions. The high-wavenumber portion of the specuum is thus determined primarily by
the inertia effects, whereas the low-wavenumber portion is determined by the viscous terms in the equations. This may seem to be

opposite to what one would expect, inasmuch as we usually consider the high wavenumber or small-eddy region to be dominated

by viscous effects. It is true that viscous dissipation is highest in the high wavenumber region because of the high shear stresses
between the small eddies. However, the small eddies owe their existence in the fn'st place to the transfer of energy into that region,

that is, to inertia effects.

8We have also carried out an analogous analysis of decaying turbulent temperature fluctuations. The analysis and results are reported in reference 31.
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Itisthisinteraction between the energy transfer and the dissipation (see eq. (5-158)) which is responsible for the high rate

of dissipation in turbulence; the dissipation is high because the high wavenumber region of the spectrum is excited by the transfer
of energy into that region. The shear stresses are higher there than in a region which could be excited in the absence of energy transfer.

Another way of saying all this is that the energy transfer generally has a stabilizing effect on the flow.

Inertia and dissipation tend to shift the energy in opposite directions on the wavenumber scale. Moreover, the mechanisms

for the two effects appear to be different. Whereas inertia tends to transfer the energy to higher wavenumbers by a breakup of large

eddies into smaller ones (or by a stretching of vortex filaments), dissipation tends to shift the energy to smaller wavenumbers by

selective annihilation of eddies, the small eddies being the first to go. As the turbulence decays, the dissipation effects must, of

course, eventually win out, since the inertia effects become negligible at the low Reynolds numbers occurring at large times.

A solution of the Navier-Stokes equations for decaying homogeneous turbulence has been obtained numerically by Clark,

Ferziger, and Reynolds (ref. 33). The resulting energy spectrum for a particular time is shown in figure 5-6. As in the case of our

calculated spectra (fig. 5-5) the energy transfer to higher wavenumbers causes the slopes on the high-wavenumber side of the

specla'um to be more gradual than those on the low-wavenumber side. The larger effect in figure 5-6 is apparently caused by the

higher Reynolds number there. That Reynolds number (R_. = 36.6) is evidently too high for the theory used in obtaining fig-

ure 5-5 to be applicable.
Experimental energy spectra reported in references 34 to 38 are qualitatively similar to and show the same trends as the

calculated spectra in figures 5-5 and 5-6. In particular, the effect of Reynolds number is shown clearly in figure 5-7, where

normalized experimental results from references 37 and 38 are compared. The shapes of the spectra again result from the energy
transfer to higher wavenumbers. That energy transfer is of course greater for the higher Reynolds-number curve, where inertial

effects in comparison with viscous effects are greater, and the slopes on the high-wavenumber side of the spectrum are more gradual

than they are in the curve for lower Reynolds numbers.

Spectrum for int'mite Reynolds number. Also shown in figure 5-7 is the spectrum for infinite Reynolds number which

results from the hypotheses of Kolmogorov and dimensional considerations (refs. 39 to 42). Kolmogorov hypothesized that the

physical quantity representative of the dynamics of high Reynolds-number turbulence is E, the average rate of transfer of kinetic
energy (per unit mass) between large and small scales of motion. The dimensions of e are (length/time)2/time = lengthZ/time 3.

Another quantity which is often a determining parameter for turbulence is the kinematic viscosity v, with dimensions length2/time.

However, the region of wavenumber space which is affected by the action of viscous forces moves out from the origin toward a

wavenumber of infinity as the Reynolds number of the turbulence increases. In the limit of infinite Reynolds number the energy

sink produced by viscous dissipation is displaced to infinity, and the influence of viscous forces is negligible for wavenumbers t_

of finite magnitude (ref. 4).
Thus, one can write for the energy-spectrum function E (with dimensions length3/time2),

E=E(_,_), (5-168)

where the geometric quantity 1¢(with dimension length -1) is included in the functional relationship because we want to end up with
a relation between E and 1¢.The only dimensionally correct expression for E which can be formed from e and K:is

E = const.E2/3_ -5/3. (5 - 169)

This is the celebrated-5/2 power Kolmogorov-Obukhov spectrum for infinite Reynolds number. It is plotted in figure 5-7, where

agreement with the experimental data for high Reynolds numbers is indicated for a range of wavenumbers.
Note that the Reynolds numbers we have considered include both very low and very high ones. However, the Navier-Stokes

equations were not used for the latter, as they were for low Reynolds numbers where a solution of those equations was obtained.

But the spectra for low and high Reynolds numbers are qualitatively similar; the energy is just spread out over a wider range of

wavenumbers as the Reynolds number increases. There are no bifurcations in going from low to high Reynolds numbers (except

possibly in the transition region).
For further consideration of the energy transfer we return to the analysis for moderately low Reynolds numbers.

Further analysis of the spectr_-energy transfer. Although we have considered in some detail the effect of spectral

transfer on energy spectra, we have not looked at the transfer spectra themselves. Those have been calculated for the approach to

the final period from equation (5-161) and are plotted in dimensionless form in figure 5-8. The quantity T* equals JoT0C)/v s, where
T(K) is the energy transfer term in equation (5-158). The transfer term gives the net energy transfer into a wavenumber band from

all other wavenumbers (eq. (5-159)). The curves indicate net energy loss from energy bands at low wavenumbers and an energy

gain to those at higher wavenumbers. The total area under each curve is zero, in agreement with equation (5-162), thus indicating

that the total contribution of T(r) to d uiui/dt is zero (see eqs. (5-158), (5-162), and (5-166)). It should be emphasized that T(r)
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representsadifferencebetweentheenergyflowingintoandoutofawavenumberband.Theactualenergytransferatapointwhere
T(t¢)isloworzeromaybequitehighaswillbeshown.

Aswasmentionedearliertheintegrandinequation(5-159)canbeinterpretedasgivingthedistributionofcontributions
to T(x:)fromvariouswavenumbersor eddysizes.TheintegrandP(n,_)(seeeqs.(5-159)and(5-160))canbewrittenin
dimensionlessformas

__ _ K" 5 1/2 12 1/2 2 K'

2b,:J

Figures 5-9(a), (b), and (c) show PvT(t - t0)7/130plotted against n"/_¢for several values of K[v(t - to)] lr:. In agreement with equation

(5-105) (integrated over all directions in wavevector space), P(_:) = 0. That is, energy transfer takes place only between
wavenumber bands that, at least to some extent, are separated. The curves indicate that the energy entering a wavenumber band at

_:comes from a range of wavenumbers _" or eddy sizes rather than exclusively from neighboring wavenumbers. Similarly the energy

passes on to a range of wavenumbers. Thus the energy in general is transported between wavenumber bands that are separated. This

transport might occur by a breaking up of large eddies into small ones. The positive area under each curve corresponds to the total

energy entering a wavenumber band at r, the negative area to the total energy leaving. The curve corresponding to T = 0 indicates
a considerable amount of energy entering and leaving at n, although the net energy gain is of course zero. The asymmetrical curves
indicate that when a small amount of energy is entering at _¢and a large amount is leaving, the energy comes from wavenumbers

close to 1¢and goes to more distant wavenumbers. The opposite is true when the energy entering at K is comparatively large.
In order to obtain an idea of the average energy transfer for all values of r; we can integrate equation (5-170) over 1¢for constant

n'/1¢ and obtain a quantity which we will call Q:

Q[(t-to)V] '5/2 10 395(rc/2) I/2

_o 16 384 {((__]7 (_¢,)5 i 1

(5-171)

Equation (5-171) is plotted in figure 5-10. The curve indicates that on the average, energy enters and leaves wavenumber bands about

as shown in figure 5-9(b), where the net energy transfer is zero.
All of the results for T0c),P (rd_), and Q(rdr') given so far were obtained by letting m--4 and n=6 in equation (5-156) for

the initial conditions. There was early theoretical support for those values, but later work indicated that in the real world they may

be somewhat lower. Empirically, the transfer term T0¢) seems, in fact, to start out at the origin with a power of tcclose to one (see

refs. 38 and 43); that would correspond to m=0 and n=-l. Then equation (5-170) is replaced by

,,2i{.x, 1}130 2\Ic l/_¢[v(t- t0)] -2{ l¢[v(t - t0)] ("_'I

' :F,+ +:
Lt

(5 - 172)
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and equation (5-161) becomes

T(_:)[v(t- t°)]2=l_o --_ g[v(t- t0)]1/212 erf {_2-2 g[v(t-to)] I/2 }-11 (5 - 173)

xexp_-3_2v(t- to)l,

where the symbol erf designates the error function. Finally, as an intermediate case, let m----0,n=2. Then

K" 1/2 4

2kk

(5-174)

and

TOQ[v(t- t0)]712_0 = ._._ ({l¢[v(t_ t0)] }3-_-72 112 4 _ {_[v(t_ t0)]112}2 / (5 - 175)

We calculated spectra for dimensionless T and P from equations (5-172) to (5-175). In figures 5-11 and 5-12 results are

compared with the previous ones for m---4, n=6. Note that there is a relation between the shapes of the curves for T(_) and those for

P(_'/K), and that the energy-transfer is less local (the energy jumps are greater) when T starts out linearly at K=0, as does P at

K'= 0 (eqs. (5-172) and (5-]73)). As mentioned earlier, that case, or a case close to it, seems to be indicated empirically.

It has been noted that the localness of the energy transfer is related to the shape of the T(K) spectrum, in particular to its

shape near _-"--0.Here we develop an approximate method for obtaining the localness of the energy transfer from the T spectrum.

To that end, note that the T spectrum can often be represented by a truncated power-exponential series (or asymptotic expansion)

in K. See, for example, the theoretical spectra represented by equations (5-161) and (5-175), and the empirical equation for T in
reference 38. Thus, one can write

: +a, +a2 2+a3 3+)(o-°'"+°_,2+). (5 - 176)
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wheredependenciesontime are included in the a_ and a i. Corresponding to equation (5-176) we have, for P(_:,_) the expansion

_,_,_,_--[(ooo/+(_,0_+_o,_'/+(_0_ +_,,_'+_0_'_)+(o_0_ +°_,_'+c,_,_+oo_,_)

+(C40 K4 +C31K3K" + C22K2K '2 + ci3K'K "3 + C04K'4) + (C50 K5 + C411_4K" +C32K31C "2 + C23K2K '3 + Cl4KI_ '4 +C05 K'5)

+(C60 K6 +Cs1K5K'+C42 K4K'2 +C33K3K'3 +C24K2K'4 +C15 K'K'5 +c06K'6)+...]Ie-al°'-a°l_' +e-°t2olc2-°to2 x'2 +...],

(5-177)

where terms of the same degree in _ and _ are grouped together in parentheses. By letting j=i in equation (5-104) and integrat-

ing over all directions in (Ic, _')-space, we get

or P is antisymmetric in !c and _".

Then equation (5-177) becomes

P(K:,_:') = - P(_:', _:),
(5 - 178)

Equation (5-180) is obtained by contracting the indices i and j in equation (5-99) and integrating over all directions in r- and
_"-space. In addition, the following systematic procedure is used for truncating equation (5-179): Those terms are retained which

are of the lowest possible degree in K, _, such that the given equation for T(_) is satisfied.

If, for example, T is given by equation (5-175), equation (5-176) becomes

(5 - 18O)

and equation (5-179) becomes

T(K) = (a2_ 2 + a4_z4)e -a2x2

P(K, 1c') = c42 (K4K '2 -- 1_21C'4 )e -a20 (K2 +K'2) (5 - 182)

where, according to our procedure described in the last paragraph, only the terms of the lowest possible degree in _:, _ which satisfy

equations (5-180) and (5-181) have been retained.
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(5-181)

T(_) = _(_, K:') die'.

xle__,_i,+,,) -_ol, _+,'_) l+e " +'"J- (5-179)
L.

The terms retained in equation (5-179) for a particular problem must satisfy the equation given for T(K:) (say eq. (5-175)), where

T(_:) is related to P(_, _) by



Substituting equations (5-175) and (5-182) into (5-180), we get

(5 - 183)

Figure 5-13 compares the approximate results calculated from equation (5-183) with the theoretical results from equa-

tion (5-174). The degree of localness calculated from the approximate equation is in good qualitative agreement with that obtained

from the theoretical calculation. The agreement is particularly good in figure 5-13(b), where the energy transfer into the wavenumber

band at x: equals that leaving (when rdr,0 for the T-spectrum equals 1).

The agreement in figure 5-13, where our approximate method is used for calculating a known P(K, if), gives us some
confidence in that method. Thus we use it to calculate the degree of localness of the energy transfer which corresponds to the

experimental equation for T(r) obtained by Ling and Huang (ref. 38), where P(r, r') is unknown. There, T0¢) is given by

T(K)[V(t- t0)]512:Av 3 _'_(2 l_{l_[v(t- t0)]l/2 } 4- 3{l¢[v(t- t0)]112 } 3 - _{K[v(t - t0)]'12} 2

where A is defined by the evolution equation

Then equation (5-176) becomes

and equation (5-179) becomes

u-T=A(t-to)2.

T(I¢) = (a,l¢ +a2x: 2 +a31¢ 3 + a41¢4)e -%_

(5-184)

(5-185)

(5 - 186)

p(K, K') = [C21(K2K" -- IO¢'2) + C31(K3K' -- K'K'3) + C41(K4K' -- KK'4)]e -¢t12(_¢+1¢'), (5--187)

where again, only the terms of the lowest possible degree in i¢, r' which satisfy the determining equations (equations (5-180)

and (5-186) have been retained. Substituting equations (5-184) and (5-187) into (5-180) we get

105/2 K" K' 2

PlY(t-t0)]2=Av3 (-T [-_--/-_)]I _¢[v(t - t°/1]'2 } 3.100[-_"- (-'_)3 ]{lctvit - to)]Z/214

_---_ to' 4 _¢vt t 1/2 5 exp _ 1+ !¢" Icvt t 1/2 (5 - 188)

Results calculated from equation (5-188) are plotted in figure 5-14. These plots of P0¢, r'), which correspond to the

experiment for T0¢) from reference 38, are similar to the theoretical results in figure 5-12 (a different case), but the degree of

nonlocalness tends to be somewhat greater. It seems better not to attempt to characterize the energy transfer as local or nonlocal,

since the dividing line between the two is necessarily arbitrary. But strictly speaking, as mentioned earlier all spectral energy transfer
is nonlocal because of the condition P0¢, !¢)= 0 which follows from equation (5-105) (integrated over all directions in wavevector

space withj = i). Thus, energy transfer can take place only between wavenumber bands that, at least to some extent, are separated.

The tendency of the energy to jump between wavenumber regions that are separated appears to be in accord with the idea

that turbulence tends to form concentrated regions of large velocity gradients (ref. 4, pp. 108, 186, and 187). Thus, when a low
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wavenumbe.reddy becomes unstable and forms a region of large velocity gradients, there will be a transfer of energy from low to

significantly higher wavenumbers. The concept was further developed m secuon 4.3.2.3, where it was shown that m a turbulent flow
there must be regions of relative quiescence interspersed with regions where the instantaneous mixing is intense and localized.

A poem due to Betchov (ref. 44) emphasizes the energy jumps occurring in spectral energy transfer more than does the

one by Richardson (see section 5.1.2.1). Betchov's poem is

Big whirls lack smaller whirls,
To feed on their velocity.

They crash and form the finest curls

Permitted by viscosity.

It may seem that the equilibrium (cascade) theory (see ref. 4) could apply in the presence of a rather high degree of

nonlocalness of the spectral energy transfer if the Reynolds number of the turbulence is very high (huge). In that case the energy

spectrum extends over many decades of wavenumbers. Thus, there could be a cascade in which the energy is passed from low to

high wavenumbers by successive moderately large jumps. However, the turbulence Reynolds number required to make the small

eddies independent of the large ones would have to be larger than if the energy transfer were more local.
Note, however, that Kraichnan (ref. 45), for example, has given arguments against the independence of the motion of the

very small and the very large eddies, even at large Reynolds numbers. The crux of his argument appears to be that even though the

active high-wavenumber components are much smaller than the low-wavenumber ones when the turbulence Reynolds number is

high, both of those often consist of long vortex filaments which are tangled together. Since the small-scale filaments can extend

axially over considerable distances, it is hard to see how their motions could be independent of the motions of the large-scale

components, particularly since the former are likely to be stretched or compressed by the latter. (See also refs. 44, and 46 to 48.)
As a further development of the discussion in the last paragraph, we return to spectral-energy transfer as related to the

interaction in triads of Fourier components (see eq. (5-80)). The spectral-transfer term in equation (5-80) is

where

= Pij( , d¢
(5-189)

(5 - 190)

The stars designate complex conjugates. As mentioned earlier, the presence of the integral in equation (5-189) means that

contributions from a range of wavevectors _' between _-ooand +oo make up the total net transfer at Ic.Moreover, according to equa-

tion (5-190), the transfer takes place by the interaction in triads of Fourier components at the wavevectors Ic, g" and _:- K'. Note that

if a triad is composed of Fourier components at the wavevectors K, p and q, then g: + p + q = 0 if p = - _ and q = -0¢- k").

An important observation is that the triads in equation (5-190) consist of products, as opposed to say sums, of Fourier

components at the three wavevectors. So all three components will have an influence on Pij0¢, k"), and thus on Tij(K), even if one

of the components is much smaller than the other two, and even if it is at a much lower wavenumber than the other two.
Thus, if it turns out that the triads having the most influence on Tij(K) (or on T (K)) generally consist of Fourier components

at three wavevectors of approximately equal magnitude, one might conclude that the interactions between large and small eddies

are relatively unimportant. If, on the other hand, the magnitude of the wavevector of one of the Fourier components in the more
influential triads differs greatly from the others, then interactions between large and small eddies will have an important effect on

the energy transfer. The latter was found to be the case in the direct numerical simulations of Domaradzki and Rogalio (ref. 49).
They found that their energy transfer was due mainly to wavevector triads which have one leg much shorter than the other two. 9

Yeung and Brasseur, using a somewhat different approach (ref. 48), arrived at the same conclusion.
These results reinforce the physical argument considered in reference 45 and in this section, and suggest that the motion

of the small eddies, even at high Reynolds numbers, may not be independent of the motion of the large ones. An important part of

9Reference49 also obtained results for the locainess of energytransfer. It was found, in agreementwith our results from equation (5-188) and figure 5-14, that
contributions to the energy transfer are spread over a range of wavenumbers. But the results from reference 49 showed somewhatmore localness. However,

comparison of figure 1(a) and figure 4 of reference 49 shows that the calculations for P0¢,1¢')are outside the range where the numerical simulations represent the
experimentof reference 38. Thus the simulations are not strictly comparable withour results, which are for the experiment of reference 38. Also. the comments
in reference 49concerning the arbitrariness inour methodologyare notwell-founded, consideringthe restrictions we placedon P(K,I(). Note, however, that the logic
usedhere in obtaining equation (5-188) is much improved over that in reference 50. At any rate it should be mentioned that the common practice (in ref. 49 and
elsewhere) of designating energy transfers within a ratio of two as local is arbitrary. By virtue of equation (5-105) all spectral transfer is nonlocal.
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thisargument is the observation made here that Fourier components of the triads in equation (5-190) occur as products. Thus, even

though the low wavenumber component of a triad may be weak, it will affect the energy transfer as much as will the other

components, since they are multiplied by one another. This might be related to the tangledness of the small and large vortex filaments

in the physical argument; noting that the small- and large-scale components are multiplied together, and that many of the triads have

one leg much shorter than the other two, may be another way of looking at the fact that they are twisted together over long distances
as vortex filaments. At any rate, both arguments tend to indicate the lack of independence of the large and the small eddies. So the

independence hypothesis (ref. 39) seems to be open to some question, based on the results to date. Of course, these comments are

not meant to detract from the agreement with experiment of the Kolmogorov-Obukov-5/3-power spectrum. But that spectrum may

require a different foundation.

We return now to the solution of the Navier-Stokes equations for decaying homogeneous turbulence obtained numerically

by Clark, Ferziger, and Reynolds (ref. 33). That solution yielded energy-transfer spectra in addition to energy spectra. The energy-

transfer spectrum corresponding to the energy spectrum in figure 5-6 is plotted in figure 5-15. The shape of the spectrum is similar

to the shapes of our theoretical spectra in figure 5-11, but as in the case oftbe energy (fig. 5-6), the energy transfer (at least the positive

portion) is spread out over a wider range of wavenumbers. Because of the condition that the energy transfer integrated over all

wavenumbers must be zero, this spreading causes the negative trough of the spectrum to become narrow and deep. The difference

between the shapes of the spectra in figures 5-11 and 5-15 is apparently due to the higher Reynolds number for the latter. The effect

of Reynolds number on the shape of transfer spectra is shown clearly by a comparison of experimental results from reference 37

(300 < Rk < 800) with those from reference 38 (3 < R_. < 30) (see fig. 5-16).
5.3.2.3 The correlation-term-discard closure for short times of turbulence decay and comparison with experiment.--Thus

far we have refrained from comparing our analytical results with experiment. In general, the significance of such comparisons is

uncertain because of lack of knowledge of the initial conditions. But it may be possible to make meaningful comparisons for at least

one short-decay-time case.
Here we return to the correlation-term-discard closure (or expansion in powers of Reynolds number or time) in order to

use it to calculate the decay of homogeneous turbulence for initial conditions obtained from experiment (ref. 51). (It should be noted

that the previous calculations in section 5.3.2.2 were based on initial conditions that allowed the solution to approach the final period

of decay at large times, rather than on experimental initial conditions.) The two-point equation (5-158), which was obtained by

neglecting quadruple-correlation terms in the three-point correlation equation can be written as

where

dE/dr + 2wc2E = T0c)

T(x:) = I?('_, _;') d_:'

(5 - 158)

(5-191)

and where, from equations (5-191) and (5-159), one can write

P(K,K")= __exp[-zv_t--fl(K'K')[[^/ tlXK2 + _'r'+ K'2)]-ext_-2v(t- t,XK2 + _'_'+ K'2)]}.
(5-192)

Note that we have replaced the particular initial condition _(_7_ rTr,5)/(2v) at to in equation (5-159) by the general condition

fl(r., r')at tl in equation (5-192). As usual, E is the energy spectrum function, related to the total turbulent energy u_i/2 by

1 -- = I_0c) dz, (5 - 166)"_uiu i

where T(K) is the energy transfer function, which gives the net energy transfer into a wavenumber region at wavenumber x from

all other wavenumbers _, P(_, _ gives the contribution from r'to the energy transfer at K t is the time, the subscript 1 designates

an initial value, v is the kinematic viscosity, and ui is a velocity component. A repeated subscript indicates a summation, and an

overbar indicates an averaged value.

The function fl(r., _)in equation (5-192) is evaluated by setting P equal to the initial condition Pl(r, _') when t = tl and

using the fact that

(5 - 193)
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Thisgives (5- 194)
flOc'_¢')= -PI(_:'_:')l(4vmc').

One of the difficulties in comparing closure schemes with experiment has been the unavailability of initial values of P(_, g").

Reasonable estimates of that quantity [P1 in eq. (5-194)] can, however, be obtained from Ling and Huang's experiment (ref. 38) and

our approximate equation (5-188). The initial condition for E0c) in equation (5-158) is obtained from reference 38.
Results calculated according to the present correlation-term-discard closure are compared with the experiment o fLing and

Huang in figures 5-17 to 5-19. Figure 5-17 also shows results forT= 0 (pure viscous decay). The quantity A is the proportionality

constant in the power decay law for Ul2 and has the dimensions of a length squared (eq. (5-185)). The initial conditions for the

analysis were specified at (v/A)ti = 0.037, where the turbulence Reynolds number RX -- --_ultt2 k/v = 12 (k is the Taylor microscale).

As one might have expected, the lower-order results ui u i and E(_:) compare better with experiment than the higher-order

one T(_:). This is because a larger error is produced in quantities which are calculated directly from equations where quadruple-

correlation terms are neglected. Agreement with experiment is indicated only for moderately small times, and none of the results

are as good as those obtained for closure by specification of initial conditions (to be considered next) or for a modified Kovasznay-

type closure (ref. 52) (The latter is more an intuitive than a deductive procedure.) For those closures good results for all initially

specified quantities were obtained even for reductions in u iu i of over 80 percent. However, the present solution is well-behaved

and shows no perceptible negative spectral energies even at large times [see curves for (v/A)tl of 0.5 and 5 in fig. 5-18]. (Some

negligibly small negative values which occurred at high wavenumbers and large times were judged to be of no importance.)

Improved results (for large times) could evidently be obtained by using a higher-order closure (ref. 22) but higher-order initial

conditions would then have to be specified.
Calculations were also made for high Reynolds numbers and compared with high-Reynolds number data (ref. 37). Not

surprisingly, the agreement was much poorer than for the low Reynolds number data shown here. If reasonable results were to be
obtained for the high Reynolds numbers, the equations would have to be closed by neglecting correlations of a much higher order,
and the amount of calculation would probably become prohibitive. Thus, this conceptually simplest deductive closure scheme works

best for short times at moderately low Reynolds numbers, or for the approach to the final period of decay. For the latter case, the

initial conditions must be chosen so that the solution approaches the final period at large times, as in references 21 and 22. Since

this is the simplest scheme, it is the most convenient one for illustrating the spectral-transfer process in turbulence. Further discussion

of the correlation-term-discard closure is given in reference 53.
5.3.2.4 Closure by specification of sufficient random initial conditions.--It was mentioned in the last section that although

a low-order correlation-term-discard closure is the simplest and thus the most convenient closure for studying the processes in

turbulence, serious difficulties are encountered when its extension to high Reynolds numbers or to large turbulence--decay times

is attempted. There is, however, another way of looking at the problem of homogeneous turbulence. In order not to lose sight of

our goal, we will first give a statement of that problem. The statement given by Batchelor is essentially the following: given the

statistical state of a homogeneous turbulent field at an initial instant, the problem is to predict the evolution of the turbulence (in

probability) as a function of time. Note that the initial development of turbulence from a nonturbulent state produced by, say, flow
through a grid, is not considered here. Rather we are concerned with the evolution of turbulence after a time when the flow is already

turbulent. In order to specify completely a turbulent field at an initial time, it is necessary to give all of the multipoint velocity

correlations or their spectral equivalents at that time (ref. 4). It is not hard to show that, given these multipoint correlations and the

correlation equations, all the time derivatives of the turbulent energy tensor and of other pertinent turbulence quantities can be
calculated. These time derivatives can then be used in a series, for instance a Taylor series, to calculate the evolution of the turbulent

energy tensor (or of the equivalent energy spectrum tensor) and of other turbulence quantities.
It is noted that when the turbulence is treated in this way, we no longer have the problem of closing the infinite set of

correlation or spectral equations. The correlation equations are used only to relate the correlations at an initial time to their time
derivatives, and those correlations must be given in order to have a complete specification of turbulence at that time. Of course, in

practice only a small number of the correlations, and thus of their time derivatives, will ordinarily be available, but a sufficient
number may be known to give a reasonably good representation. It might be pointed out that even in those analyses which require

a closure assumption, the turbulence should be specified initially by its correlations or spectra since the correlation equations require

initial conditions.
Kraichnan (ref. 54) has studied the convergence properties of series such as those considered here. As mentioned in another

article by that author (ref. 55), it is not necessary that an expansion be convergent in order to be useful, since divergent series can

provide excellent asymptotic approximations (ref. 56).
Although the present method circumvents the closure problem in the usual sense, there is still the question of the legitimate

truncation of the time series to obtain explicit results. Here we are not concerned primarily with convergence questions but will use

as a test the agreement of the results with experiment. Although a Taylor series might give good results if sufficient statistical
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information were available at the initial time, it will be seen that an exponential series which arises in a study of the nonlinear decay

of a disturbance in a fluid (ref. 57) is much more satisfactory. This is not surprising since the exponential series is an iterative solution

of the Navier-Stokes equations and thus contains information which is not contained in the Taylor series. The resulting formulation

gives results which are in quite good agreement with the available experimental data (refs. 58 and 59).

Initial time derivatives and simple expansions. In the preceding introductory section it was noted that if the multipoint

correlations are known at an initial instant, as they must be for a complete specification of the turbulence at that instant, then the

time derivatives of the correlations can be calculated from the correlation equations. For illustrative purposes we will consider the
--'-'7 •

derivatives of the turbulent energy tensor uiu j , where ui and uj are respectively velocity components at the points P and P"

separated by the vector r, and the overbar indicates an averaged value. Then the first time derivative of u iu] at t = tl is given directly

by the two-point correlation equations (section 5.3.2.2) evaluated at t = tl:

'a--F ,,:,,t. a J,=,,
(5 - 195)

where the correlation between the (mechanical) pressure o (eq. (3-14)) and the velocity u i is given by

1 _2 (_'_J)t=tl O2(_)t=ti
= (5 - 196)

and a similar equation for (u--_)t=t t . The pertinent solution of equation (5-196) is (ref. 4)

n as ask

where u i" is the velocity at the point x" =j - s, and the integration is over all s-space. This solution is for an infinite fluid, for which

case the boundary conditions are that ou i is bounded for r = 0 and zero for r = to. The quntity p is the density, v is the kinematic

viscosity, and o is the pressure. A repeated subscript in a term indicates a summation, with the subscript successively taking on

the values 1,2, and 3. The correlation equations are, of course, derived from the Navier-Stokes equations. The quantity 3uiuJ_t

at t = tl can be calculated from equations (5-195) and (5-196) if uiu i and the two-point triple correlations are known at t = tl.
-----7

The second time derivative of uiu j is obtained by differentiating the two-point correlation equations and evaluating the

result at tl. This gives

Dt 9 Jt:ti : _k _]i:, I ta ),=,i pL rJt. a J,=,, at,t. a Jt=,,J
(5 - 197)

_
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and

orTa_t at j,:,, : orTar<t _r j,:,,"
(5 - 198)

[ (_)] in equation (5-197)is obtained from the three-point correlation equations (section 5.3.2.2)The quantity (a/at) t=tl

written for t = tl and r' = r. (The vector r' separates the points P and IY'.) Thus,

--UiUjUk / =
at )t:t I

---_ [--_ (_)t=tl- _ (_)t=tl + _ (_)t--t 1 + _ (_)t =tl }
(5 - 199)

+ 2v[' _ + or_ or_
or_ or._ ' ,

rP_--r

where (_)t=tl is given by

a2(_)t=t, _2(_)t=t, ] _2(UgUmUiU_)t=tt+ 2 areor_ + or_or_ " = armor_

a2(UgUmUiU_)t=t I a2(UgUmUiU_)t=t, _ a2(UgUmUiU_)t=t,

arm or_ orm art org or<_
(5 - 200)

Similar equations are obtained for the other pressure-velocity correlations. The boundary conditions for equation (5-120) are similar

to those for equation (5-196); that is, ouiu _ is bounded for r or r'= 0 and zero for r or r' = .o. Also, an expression for

[(D/at)(_)] t=ti in equation (5-197) is obtained by letting r' = 0 instead of r in equation (5-199)" Thus, if the turbulence is

specified sufficiently well at t= tl that the double, triple, and quadruple velocity correlations are known, (22 (u_)/at 2)t=tl can

be calculated. Similarly, higher-order derivatives are obtained by considering four or more point correlations in the turbulent field
-----7

(ref. 22). With the time derivatives of uiu--'--_known at t = ti,a Taylor series gives UiU j as a function of time as

-- l, ' '
' 2+....

(5-201)
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A similar analysis can be carried out in wavenumber space. For instance, the energy spectrum function E0¢), which shows

the contributions at various wavenumbers to uiu i/2, can be written as

+ (0E(I¢))(t-tl_ 1(_2E0¢)_ (t-tl)2 +... (5-202)

E(g)=E(g)t=t' _,'_Jt=t, '+2!_, 0t 2 Jt=h

where it is understood that E is a function of t as well as oft, and where 0E0c)_t is obtained from the Fourier transform of the

two-point correlation equation (eq. (5-138)) as

(0E(K)]
J= SA 2 {-2VK2tpii(I_) + iKk[{Pild(K)- _0iki(-K)]} dA(K)' (5-- 203)

where dA0¢) is an element of surface area of a sphere of radius _ t¢is the wavevector corresponding to the spatial vector r, and _ii

and _ are respectively the Fourier transforms of u iu [ and u iu ku i .Extracting from the intergral that portion which can be written

in terms of E(_) and setting the rest of the integral equal to TOO give

0E0¢) = T0¢ ) - 2v_c2E0c). (5 - 204)
0t

Equation (5-204) is, of course, the scalar form of the two-point spectral equation. The transfer term T0c) produces energy transfer

between wavenumbers and arises from the triple correlation term in equation (5-195) (with i =j). (Note that the pressure-velocity

correlation terms in eq. (5-195) drop out for i =j.) The second time derivative of E0¢) is

(_2E(K)_ = (_T(K)) _ 2VK2 (_E(K..__)) (_T(K)I _ 2vK2T(K)t=t ! + (2VK2)2E(K)t=t .
T)t=t 1 _, Ot .Jt=tl _, 0t it=t, =_- 0"""_Jt=tl

The quantity (OT(K)/_t)t =h can be calculated from the two- and three-point spectral equations if the two- and three-point

spectral quantities in those equations are known at t = tl. From equations (5-149), (5-152), and (5-153) one obtains

OT(x:)=Ot SA S_,_ 2 (-2vK2{iKk[l_iik(I¢)- _iik(-I¢)]} + f([_ijk' [_ijk')) dK'dA(K)'

where I(is the wavevector corresponding to r', dt¢= dKldK2dK3, and I_ijl¢and _ijk_'are respectively the Fourier transforms of U i UjU [

and UiUjU_tU_. If by analogy with the procedure used for obtainingequation (5-204), we extract from theintegral that portion which
can be written in terms of spectral quantities already defined (E00 and TOQ), we have

2vK2T(K) = SA S_2' f([_ijk' [_ijk')dK'dA(K) = V[[_ijk(l(:')' [_ijkt(lt")]' (5--205)

where V is a quantity related to the three-point spectral tensors 13ijkand _jke. More precisely we can say that V is a functional

of _jk and 13ijkl, since each value of V depends on values of l_ijkand 13ijkCat all points of g-space. With equation (5-205), the

for (02E/Ot2/ becomesexpression
k -- / t--t I

02E

7J,=,, = (5 - 206)
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TheTaylorseries for E then becomes

E(_)= Et=tt +(Tt= h - 2vK2Et=tl )(t-tl)+l[vt=h- 4v_:2Tt=h +(2v_:2) 2 Et=tl ](t-tl) 2+" ""
(5 - 207)

Equation (5-207) was used in conjunction with available experimental data at an initial time (ref. 35) in an attempt to calculate the

variation with time of E(_:)and thus of uiu----_..However, with the available initial data (Et= h , Tt=tt, and Vt= h ), reasonable results

were not obtained except at small times (fig. 5-21). It thus appears that, in order to obtain good results by using a simple Taylor

series, initial statistical information of much higher order than that which is available would have to be given. Thus, an alternative

approach which makes more efficient use of the initial statistical information and also incorporates additional information from the

equations of motion will be considered.
A workable formulation for the development of turbulence from a given initial state. In order to obtain a more efficient

means for calculating the evolution of turbulence than by a Taylor series in time, we consider an iterative solution of the Navier-

Stokes equations similar to that in reference 57. In addition to the initial statistical information and calculated time derivatives, we

will then have information about the form of the decay law from the equations of motion.

Although attention was confined to determinate initial conditions in reference 57, for the present purposes we can just as

well assume the initial velocity fluctuations to be random or turbulent. Thus, we consider a field of homogeneous turbulence to be

made up of a very high density of eddies or harmonic disturbances in wavenumber space. For all practical purposes then, since the

density of disturbances is very high, the spectrum of the turbulence can be considered continuous. The velocity and pressure at any

point in the field are given by

and

bu__i.__v _2u_____= 1 _ b(UiUk) (5-208)
bt t)X k bx k p t)Xi OXk

1 _2(I = _2(UkUg) (5--209)

p Oxk 3xk Oxk bxg

The latter equation is obtained by taking the divergence of equation (5-208) and applying the continuity equation.

From the spectrum of harmonic disturbances we arbitrarily select two cosine terms with wavevectors q and r. Then, the

velocity associated with those disturbances will be

u_c =a i cosq.x+b i cosr-x, (5-210)

where the superscript cc on the velocity indicates that it depends on two cosine terms. The results that follow would be the same
Cc

if two sine terms or a sine and a cosine term were considered. If u i is substituted for ui in the right sides of equations (5-208)

and (5-209), the time variations of ai and bi plus additional harmonic terms are obtained. If we then substitute that new expression

into equations (5-208) and (5-209) another expression containing still more harmonic terms is obtained. In each approximation, the
linear terms of the Navier-Stokes equations are considered as unknown and the nonlinear terms as known from the preceding

approximation. As shown in reference 57, continuation of this process leads to

where

and

u_c = Z (A_,_ cosx. x + AS,'_ sin x-x), (5- 211)
lC

c ¢

A'e'l,l¢= Z ai,lc,q exp[-blc, q (t - ti)] (5- 212)

q

AS.'r = Z a_._.r exp[-b_.,r(t- t,)]. (5- 213)
r
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Comparisonof equations(5-211)to (5-213)withthefirstandsecondapproximationsin reference57showsthat
b_,I = b_.1= v_¢2.Also, we note that since the two harmonic components in equation (5-210) were selected arbitrarily, expressions
similar to equations (5-211) to (5-213) will be obtained for any other two components. But the nonlinear interaction of any number

of harmonic components can be expressed as the sum of the interactions of pairs of components (eqs. (37) and (38) of

ref. 57). Thus ui, the velocity resulting from all the harmonic components, will be of the form of equations (5-211) to (5-213) and

can be wriUen as

wh_e

ui=X(A[,tccosK'x+A[.tcsinK'x ),

.K

A_?x --a()i,_;l exp[-v_¢2 (t - t')] + Xal_q, exp[-bOq (t - q)]"

q
q#l

(5-214)

(5-215)

The summations in equations (5-214) and (5-215) will, of course, contain more terms by many orders of magnitude than those in

Ai.t¢, ai,t¢,equations (5-211) to (5-213). Since the initial conditions are random, the quantities -() () and bOq are assumed to be random

variables. The space-averaged value of u_ (no sum on i) is obtained from equation (5-214) by squaring, integrating over a cycle,

and using the orthogonality property of sines and cosines. This gives

where

A(. ]2=
I,lCJ

--Y2L' _''j + (Ai'x

(5-216)

[al)t¢,l ]2 exp[_2vK2 (t- tl )]+ X [al)r,, q ]2 exp[_2bOq (t- tl)] + X a_.)r,.qa_,_ r exp{_2[bOq + bOr ](t-tl) }.
q q.r

q#l q,tr

(5-217)

According to equation (5-217), (Alex)2 and (A_,x)2 in equation (5-216) have the same form, so that we need not carry along the

superscripts c and s.
We want to obtain an averaged form of equation (5-217) which is a smoothed function of the magnitude of the vector

(but not of its direction). In order to do that, we divide the interval of K= (Kiri)l/2 over which disturbances occur into a large number

of small increments Am The terms in _ in equations (5-216) and (5-217) are divided into groups each of which corresponds to
K

a particular A_:. Note that, while the magnitudes of the various vectors lying in a particular AK are approximately equal, theft
directions can, of course, vary. The group of terms corresponding to each A_: is then subdivided into groups in each of which the

values of the bi,_q in _ do not vary appreciably from a value of bs(K). The index s designates a particular increment in the
q

q,_t a .2 will have an average value which we designate by i,Evalues of the bi,_q. Also, foreach s, t,r_q s "Thesummati°n _ in
q

q;t]

equation (5-217), which applies to a particular K, is then replaced by

X ns,(i)(a2K)s0¢) exp[-2bs(K)(t - t 1)]
$

which applies to a particular AK; and where nss i) is the number of terms in _ which are assigned to the group s for the component
q

qgl
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whichapplies to a particular A1¢,and where ns,(i) is the number of terms in Y. which are assigned to the group s for the component
q

q_l

i. The parentheses around i indicate that there is no summation on that subscript. A similar regrouping can be carried out for the

terms in. _ However, that summation turns out to be zero, if we assume that the random ai,,¢ are uncorrelated, since (ai,r,,qai._ ;r >s

q,r
q_l

will be z_ro for q _ r. Then the average value of A'21,Kin the increment A)¢ becomes (see eq. (5-217))

= s_(n_) a2(A2_¢> ()¢)(ai2,r,,1 ) 0¢) exp[-2w¢2 (t - t1)] + ( i,,¢)s 0¢)exp[-2bs0cXt - tl)],

(i)

2
where nr is the number of terms in _ that lie in A_¢.The expression for u i (eq. (5-216)) then becomes

q
q_l

(5-218)

i = (ai2,t,1 >0¢) exp[ ]+E ]
s \ )¢ J(i)

To obtain an expression for the energy spectrum function E, we note that (eq. (5-166))

(5-219)

I u--_-.= 12E dK, (5 - 166)

where uiu'-'--_ = u2 + u2 + u 2 • Equations (5-219) and (5-166) then give

IO Edl¢=_' l__.(ai2 lai,)¢,l>exp[_2vK2(t_tl)]+_.,.Insl a_ t
exp[-2bs(t-tl) ] A)¢,

z-'21 AK t - J %-,kn_):
)¢ !.

where there is now a summation on i. If A)¢ is very small, we can write, to a very good approximation,

(5 - 220)

E 0¢)= B2 (K)exp[-2v_:2 (t - tl)]+ E Bs20¢) exp[ -2bs0c)(t- t')]" (5- 221)

s

Equation (5-221) gives the evolution in time of the energy spectrum function from an initial state which is specified by the B's and

b's in the equation.
As shown in the last section, if the turbulence is specified at an initial instant, the time derivatives of E can be

calculated at that instant by using the Fourier transformed correlation equations. Thus, it is desirable to write the B's and b's in

equation (5-221) in terms of E and its derivatives at the initial time. That can be done by evaluating equation (5-221) and its time
derivatives at t = tl and solving the resulting system of equations for the B's and b's.

In what follows, we will first retain only two terms of equation (5-221). Equation (5-221) can then be written conveniently

as

E=E,=,, t0l+(1-C)exp[-2b( X'-t,)]}. (5 - 222)

where 0<C<I.
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For C = 1 equation (5-222) reduces to the well-known expression for the final period of decay (see eqs. (5-121)

and (5-157) for _i(_) = 9ii(K)). For the general case (C ¢ 1) we could determine C and b in terms of the first and second derivatives

of equation (5-222) for t = tl and then evaluate those derivatives by using the two-point spectral equations (see eqs. (5-204)

to (5-206)). The following procedure turns out to be simpler, however. By substituting equation (5-222) into the spectral equation

(5-204) we get for the energy transfer term

Then,

T = 2(1- C)(v_: 2 - b)E,=,, exp[-2b(t- tl) ] = Tt= h exp[-2b(t- tl) ].

(_T 1 ,x_I-_u(t-_,)]_T=0t 2bTt=h exp[-2b(t-tl)]= _ t=h

Comparing the last two members of equation (5-224) and using equation (5-205) gives

From equations (5-223) and (5-225) we have

Equations (5-222) and (5-223) then become

and

From equation (5-205)

b = Vl( 2 Yt=tl

2Tt= h

C = 1 T2t=h

Vt=hEt= h

E:E, tl
T,:t,'xPE-'I'"'Tt:,l/t-t"]

L \ t=h ./ J

where C is given by equation (5-226).

(5 - 223)

(5-224)

(5 - 225)

(5 - 226)

(5 - 227)

(5-228)

(5-229)

Equations (5-227) and (5-228) were obtained by retaining two terms on the right side of equation (5-221). We consider

next a higher order approximation in which three terms are retained in that equation. If equation (5-221), with three terms retained,

is substituted into equation (5-204), we get for T

(5- 230)T= 2B2(_: 2 - b0exp[-2b,(t - t,)]+ 2B2(K 2 - b2)exp[-2b2(t- tl) ].

Equation (5-230) contains four unknown functions which are to be determined by the initial conditions. For that purpose we use

equation (5-230) and its first three derivatives evaluated at t = tl. Thus, we obtain
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and

2b2T2 + T3
B 2

16b12(_ 2 - b 1)(b2 - b 1)'

2blT 2 + T3
B_

16b22(K:2 - b2)(bl - b2)'

(5- 233)

(5 - 234)

where Tb T2, and T 3 are the f'trst, second, and third time derivatives of T(_) at t = tl. The first derivative T1 can be written in

terms of the functional Vt=tt, which gives a representation of three-point spectral quantifies (eq. (5-205)). Equations for higher

order functionals can be obtained by the procedure used for obtaining equation (5-205) for V. Thus, by using the four-point spectral

equations (10), (12), and (18) of reference 22 we get

3.__V= _2vK2V + R
3t

where R is a functional of three- and four-point spectral quantities. Similarly,

(5-235)

_)R = _2v_¢2 R + S (5 - 236)
&

where S is a functional of three-, four, and five-point spectral quantifies. By using equations (5-205), (5-235), and (5-236), the first,

second, and third time derivatives of TOO at t=tl in equations (5-231) to (5-234) can be written in terms of higher order spectral

quantities as

T 1 = -2vK2Tt=tl + Vt=tl , (5 - 237)

and

2 2
T2=(2V_ ) Tt=tt-4v_2Vt--t,+Rt=tt,

2 3

(5-238)

(5-239)

Results and discussion. A comparison between the experimental data of Uberoi (ref. 35) and the present theory

(eqs. (5-227) to (5-229)) is given in figures 5-20 to 5-23. (Another pertinent experimental investigation is that of Van Atta and Chen

(ref. 36). They measured directly the individual terms in the two-point spectral equation; however, their data are for only one time.)

The comparison in figures 5-20 to 5-23 is made for an initial time corresponding to X/M = 48 in the experiment of ref. 13

( t* = (v/M2)t = 0.001818, X is the distance downstream from the grid, and M is the mesh size of the gird). For the initial

specification of the turbulence, values of E(g)and T(_:) were obtained from figures 5, 9, and 10 of reference 35. Initial values of
V were not given directly in reference 35 but were estimated from the decay data for T(g) and equation (5-205). Except for

experimental error those values will be the same as those that might have been measured directly.
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Theagreement between the predicted and experimental energy spectra for the same initial conditions (fig. 5-20) appears

to be quite good considering the difficulty of the measurements. The calculation of the experimental values of E required the

differentiation of measured one-dimensional spectra and an assumption of isotropy.

Predicted and experimental values for the decay of uiu i ale plotted in figure 5-21. The agreement between theory and

experiment is excellent for values oft* up to about 0.006. (Note that spectra were measured only for values of t* between 0.00182

and 0.00417.) Elimination of the moderate deviation for t* > 0.006 might require a higher order theory (more terms in eq. (5-221)),

together with additional initial statistical information. Alternatively, the deviation might be due to the amplification at large times

of slight inaccuracies in the measured initial spectra. The theoretical values for t* less than 0.00182 were calculated by working
backwards from the measured initial spectra. Also included in figure 5-21 is a Taylor series solution which uses the same initial

information as the exponential series and the curve for the weak turbulence approximation. It might be pointed out that the curve

for the weak turbulence approximation is not the -5/2 power decay law usually given for the final period (ref. 4) but is the curve

obtained by using the measured initial energy spectrum and equation (5-222) with C = 1.

Spectra for the energy transfer term T(K) are plotted in figure 5-22. The experimental and theoretical curves are in good

agreement except near the value of )z where Tt=tj changes sign. The deviation there results from a mathematical singularity in

equation (5-228) when Tt=t t = 0. However, that deviation does not seem to be serious, because the real physical curve in that region

can easily be estimated graphically or by using an interpolation formula. This is particularly true since it is known that the total area

enclosed by the T(K) spectrum should be zero (eq. (5-162)). It appears likely that the difficulty could be eliminated if another term

were retained in equation (5-221). (More will be said about that possibility in the next paragraph.) The deviation also carries over

to some extent into the results for E(K) and u iu i . However, if one does not use values of _: close to the point where Tt=t, changes

sign for calculating E0¢) and u iu i , the inaccuracies in those quantities will be small. It appears that the overall agreement between

theory and experiment obtained by using equations (5-226) to (5-228) should be considered encouraging.

For the sake of completeness, spectra of the functional V (eqs. (5-205) and (5-229)), the third initial condition specified

for the turbulence, are plotted in figure 5-23. The agreement between theory and experiment is probably within the uncertainty in

estimating V from the decay data in reference 35, except in the vicinity of the point where Tt= q changes sign. Thus, the theory

predicts the evolution in time of E(,:), T(_), and V (_),when those quantities are specified at an initial time.

We have not been able to apply a higher-order theory to Uberoi's data, that is, to evaluate three instead of two terms in

equation (5-221) by using the initial data given in his article. However, we can apply a higher order theory to the analysis in section

5.3.2.2, since for that analysis we can, in effect, calculate as much initial information as is desired. That analysis neglects quadruple

correlation terms in the three-point correlation equations and should apply, for a particular set of initial conditions, at times

somewhat before the final period of decay. The initial conditions, as well as values at later times, are given by closed-form equations

in that analysis and thus are better defined than may be possible in an experiment. For the present purposes, the analytical results

from section 5.3.2.2 might in fact be thought of as experimental results in which the initial conditions are specified exactly (an

analytical experiment).

The case considered here corresponds to figure 5-5. Values of dimensionless E(_:), T(_:), and time derivatives of T0c) for

the initial specification of the turbulence (t _ = 0.002) are obtained from equations (5-165) and (5-161). We can eliminate the time

derivatives of T(K:) by introducing V (eq. (5-205)) and the higher-order functionals R and S (eqs. (5-235) and (5-236)). In the

present case, those quantities will all be representations of correlations of order no higher than the third, since terms involving

correlations of higher order than the third are assumed negligible in the analysis of section 5.3.2.2.

Figure 5-24 gives a comparison between results for T(_:) calculated from the present theory and those from section 5.3.2.2.
e

The quantity J0 is a constant related to conditions at to =-0.00633 in the equations of section 5.3.2.2. The starred quantities in
figures 5-24 to 5-26 are the same as those in figures 5-20 to 5-23 if we let J0 = M3v2. As expected, when T():) is calculated from

equation (5-228), the agreement with the results of section 5.3.2.2 is good except in the region where Tt=tl changes sign. However,
when a higher order theory is used by retaining three terms in the expression for E (two terms in the expression for T0¢)

(eq. (5-230)) the agreement is excellent at essentially all values of K. It might be expected that a similar improvement would be

obtained in figure 5-22 if a higher order theory could be used for comparison with the experimental data of Uberoi.
Because of the good agreement obtained for T in figure 5-24, one would expect the calculated energy spectra E to also

be in good agreement with those from section 5.3.2.2. Figure 5-25 shows that this is indeed the case. The energy spectrum, in this

case, decays in a highly nonsimilar fashion. In order show the effects of spectral energy transfer on the energy spectrum, curves for

the final period of decay (first term ofeq. (5-165)) are also included in figure 5-25.

Figures 5-26 to 5-28 show plots for the decay of the higher order spectral quantities V, R, and S. The agreement between
the present higher order theory and the results of section 5.3.2.2 is very good. Although the effects of the singularity at )c= 15.33
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aregreaterforthesehigherorder quantities than for the lower order ones, they are still not apparent unless points very close to the
singularity are used in plotting the curves,. For points close to the singularity, an interpolation formula can be used. Thus, by

specifying the initial conditions for E, T, V, R, and S, we can predict the evolution in time of those quantities by using the present
higher order theory. That is, the required number of initial conditions is no greater than the number of quantities whose decay we

can predict.
The higher order theory (three exponential terms retained in eq. (5-221) can also be compared with grid-turbulence data

obtained in a water channel by Ling and Huang (ref. 38). For that comparison, the experimental input can be conveniently obtained

from an empirical equation for E (eq. (5-184)). The higher order spectra were not measured directly in their experiment but could
be calculated from their equation for E by using equations (5-204), (5-205), (5-235), and (5-236). Except for possible experimental

error those values will be the same as those that might have been measured directly. The comparison is shown in dimensionless form

in figures 5-29 to 5-34. The quantity A is an experimental constant (the proportionality constant in the power decay law for u2 ).

It has the dimensions of a length squared and is related to conditions at time to (eq. (5-185)). As in the preceding comparisons,

unphysical singularities occurred in the theoretical spectra at certain values of r,, particularly in the higher order spectra. Thus, in

the vicinity of those points, four-point interpolation formulas were used.

Figure 5-29 compares theory and experiment for the decay of turbulent energy when the initial state is specified at

(v/A)tl = 0.0075. Theoretical curves are shown for 1, 2, and 3 exponential terms retained in equation (5-221). The curve for three

terms is in good agreement with the experiment for the whole decay period. The curve for two terms is in almost as good agreement.
That is not the case for the spectra, where only the curves for three terms agree closely (see the curves for E in fig. 5-30). Comparison

of the curve in figure 5-29 for one term retained (weak turbulence approximation) with the experimental curve shows the effect of

inertia on the decay process. As in figure 5-21, the curve for the weak turbulence approximation in figure 5-29 is not the-5/2 power

decay law usually given for the final period, since measured initial energy spectra were used here.

Figures 5-30 to 5-34 give a comparison of theory and experiment for the decay of the spectra used to specify the initial
state of the turbulence at tI. The curves indicate good agreement with the higher order theory. That is, the theory is able to predict

the decay of all of the spectra used to specify the initial turbulence, when three exponential terms are retained in equation (5-221).

High Reynolds-number turbulence. Thus far, we have given the basic theory for closure by specification of initial
conditions and calculated results for low- and moderate-turbulence Reynolds numbers (3 < R_.< 70). Here, we compare calculated

results with the higher Reynolds-number experimental data of Ling and Saad (ref. 37). The Reynolds numbers for those data were

high enough to obtain a-5/3-power region in the energy spectrum (300 < R_. < 800). The exponential-series expression for the energy

spectrum function E, an iterative solution of the Navier-Stokes equation, is given by equation (5-221):

E (_)= B2 (_)exp[-2vr2 (t- tl )] + _ B 2 (_)exp[-2bs (_:)(t- tl)].
$

(5- 221)

Equation (5-221) gives the evolution in time of the energy spectrum from an initial state at time tl which is specified by the B's
and b's in the equation. The first term is the well-known expression for the decay of E in the final period (weak turbulence

approximation). The rest of the terms in equation (5-221) therefore give the contribution of inertia to E. In the present paper we
will retain a maximum of four exponential terms in equation (5-221). This is one more term than it was necessary to retain for the

low and moderate Reynolds-number data considered in the last section.
With four terms retained in equation (5-221), we will have to specify seven spectra at t l in order to evaluate the functions

B, BI, B2, B3, and bl, b2, and b3. Evidently, we need more spectra to describe the initial turbulence at higher Reynolds numbers

because a wider range of eddy sizes is excited, and the turbulence structure is more complicated than at lower Reynolds numbers.
In addition to E(r,,t 1), we will use spectrum functions designated by T(_:), V, R, S, L, and M, all of which are specified

at the initial time tl. The quantity T(_:) is the well-known energy-transfer function given by equation (5-204):

T(_:, t) = _ +
2vl<2E (5 204)

The quantities V, R, S, L, and M are two-point functionals of three- to seven-point spectral quantities (see preceding sections).

Each functional depends on a field of values of the multipoint spectral quantities. For instance,

A

(5 - 240)
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where K, and _", are vectors in wavenumber space corresponding, respectively, to r and r' in physical space. The [Sip and _jk¢

are Fourier transforms of uiuiu _ and UiUjU_cU_',where the ui, ui, etc. are velocity components at various points, and the overbars

indicate averaged values. The element dI¢ = dgldK2dK3, and dA is an element of surface area of radius _ Equations similar to

(5-240), but which involve a larger number of wavevectors, can be written for the other higher-order spectra.

By integrating a three-point spectral equation over _ and A(K) (see preceding sections), we get, using equation (5-240),

equation (5-205):

V(K, t) = 3T(_, t)/0t + 2vr2T. (5 - 205)

Similarly, by performing integrations over wavenumber space of higher-order multipoint spectral equations, and using relations

similar to (5-240), we get

and

R(_:, t) = 0V(K, t)/Ot + 2vx:2V,

S(x:, t) = 0R(K, t)/_t + 2v_2R,

L(1c, t) = 0S(I_, t)/0t + 2v1_2S,

M(K, t) = ¢3L(1¢,t)/_ + 2VlC2L.

(5-235)

(5 - 236)

(5-241)

(5 - 242)

Equations (5-205) and (5-235) to (5-242) can be thought of as two-point aitematives to the multipoint spectral equations. They are
much easier to work with because, although conceptually the spectra contained in them are functionals of multipoint spectral

quantities, they are, for purposes of computation, simply functions of _:(and t). For instance (see eq. (5-240)),

VtlSijk(r,,r'), I_jke(r,,K')] = V(K).

It is easy to show that V, R, etc. can be obtained from equations (5-204), (5-240), (5-205), (5-235) to (5-242), and the time derivatives
of E. We thus have a simple way of calculating initial functionals for a given set of data.

The higher-order spectral quantities are somewhat similar to T(_), inasmuch as they contain the effects of transfer between

wavenumbers. However, they differ in that they also contain other effects, so that the areas under those spectra are not necessarily

zero, as in the case of T(r).

For comparing the theory with the experiment of Ling and Saad (ref. 37) the experimental input can be conveniently

obtained from an empirical equation of E, equation (8) in their paper. The higher-order spectra were not measured directly in

their experiment, but could be calculated from their equation for E and equations (5-204), (5-240), (5-205), and (5-235)
to (5-242). Except for experimental error those values will be the same as those that might have been measured directly. The B's

and b's in equation (5-221) can be related to the initial spectra by successive differentiations of that equation and Ling and Saad's

equation (8) with respect to time, setting t = tl, and using equations (5-204), (5-240), (5-205), and (5-235) to (5-242).

It might be pointed out that although we use the initial time variation of E in obtaining the initial conditions, we do so

only because of the method of measurement of those conditions. Regardless of how they are measured, the initially specified spectra

are, conceptually, functionals of multipoint spectral quantities which could in principle, be measured directly at one initial time.
However, the method used here is much simpler. Moreover, it does not require us to know E for the whole decay period but only

at enough early times to calculate the required initial conditions, the latter being a much smaller amount of information.
The amount of required initial information may still seem large, and the theory therefore somewhat uninteresting. Indeed

it would, if the specification of many initial spectra were necessary to calculate the evolution of one or two lower-order quantities.

The evolution of all of the initially specified spectra can however, be calculated, as will be seen. If the objective ofa tt:,_ulence

theory is to calculate the time evolution of as much statistical information as possible, then the structure of the present thee) y should

be no disadvantage. Although it may not be particularly convenient from a practical standpoint, the initial specification ol _,number

of interacting quantities appears necessary for the problem posed.

Before giving results obtained from equation (5-221), we will consider a Taylor series with a maximum of seven initial

spectra [the same maximum number that will be used with equation (5-221)], and a modified Kovasznay-type closure (modified
to include an effect of initial T) (ref. 52). Results for those calculations are given in figure 5-35, where the initial state is specified

at t_ = 0.0048. The quantity ui is a velocity component, the over-bar indicates an averaged value, and an asterisk on a quantity

indicates that it has been nondimensionalized by the kinematic viscosity and an experimental constant A, the proportionality
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constant in the power decay law for u_ (eq. (1) of ref. 37). In contrast to the A for lower Reynolds numbers in figures 5-29

to 5-34, (see eq. (5-185)), the A in figures 5-35 to 5-42 has the dimensions [(length) 2 (time) 1.3]. The turbulent energy (1/2) u_-

is obtained by integrating E over all wavenumbers. Figure 5-35 indicates that the Taylor-series results agree with experiment only

for small times. Evidently, many more terms (and initial spectra) would be required in order to obtain accurate results for uiu i at

_argetimes.N_tethatevenifen_ughtermswereretainedintheTay_orseriest_giveaccurateresu_ts for uiui ,thedecayofthehigher-

order spectra which would then have to be specified initially could not be accurately calculated. Thus, the use of a Taylor series in

the present problem does not give a satisfactory solution, regardless of the number of terms retained.
The modified Kovasznay-type closure is in somewhat better agreement with experiment than the Taylor series, but at large

times the agreement is still not good. This is in contrast to its good agreement at moderate and low Reynolds numbers (ref. 52). It
was introduced in reference 52 in an effort to reduce the required number of initial spectra. Evidently, that effort is successful only

for moderate and low Reynolds numbers. It is possible, of course, that a more sophisticated method might be more successful (e.g.,

see ref. 60).

A comparison between theory and experiment using the exponential series (eq. (5-221)) is given in figures 5-36 to 5-42,
_t

where the initial state is again specified at t I = 0.0048. As was the case for the lower Reynolds numbers considered in section 5.3.2.4,

unphysical singularities occasionally occurred in the present theoretical spectra. Inasmuch as the unphysical values were localized,

particularly in the higher-order approximations, a smooth curve could be obtained without taking them into account.

Figure 5-36 gives a comparison between theory and experiment for the decay of turbulent energy. Theoretical curves ".,re
shown for one, two, three, and four exponential terms retained in equation (5-221). The curve for four terms is in good agreement

with experiment for the whole decay period.
Comparison of the curve in figure 5-36 for one term retained (weak turbulence approximation) with the curve for four terms

shows the effect of inertia on the decay process. In contrast to the results for moderate Reynolds number (fig. 5-29), where inertia

and viscous effects were of the same order of magnitude, the inertia effects for the present high Reynolds number results are at least

an order of magnitude greater than the purely viscous effects. Figure 5-37 compares results for the two ranges of Reynolds number.
Thus, most of the decay at high Reynolds numbers is due to inertial self-interaction of the turbulence, rather than to purely viscous

effects. Another (perhaps better) way of saying this is that at large Reynolds numbers most of the eddies making up the turbulence

are inertial. That is, they would be absent if they were not excited (at higher wavenumbers) by the inertial or transfer term in the

spectral equation. The ultimate dissipation of turbulent energy into heat is still, of course, produced by viscous action. Fig-

ures 5-38 and 5-39 show how the energy and the transfer spectra decay with time.

Figures 5-40 and 5-41 compare theory and experiment at a late time for all of the spectra which are initially specified to
described the initial turbulence. The prediction of the decay of all seven of the spectra which are specified initially is rather good.

Thus, the present theory appears to solve an initial-value problem for high Reynolds-number turbulence in which the decay of seven

initially specified spectra is predicted. Note that the higher-order spectra occur at higher wavenumbers.
Although the initial dissipation spectrum _'2E is not specified independently, because of its importance in turbulence theory

it is compared with experiment and with the energy spectrum at a late time in figure 5-42. Again, good agreement is indicated. The

separation of the energy and dissipation spectra is good evidence that we are dealing with high Reynolds number turbulence.
Concluding remarks---the gap problem. If a homogeneous turbulent field is specified at an initial instant by its

multipoint-velocity correlations (or their spectral equivalents), the initial time derivatives of those quantities can be calculated from

the correlation or spectral equations. The development of the turbulence in time can then be obtained by using those derivative in

a series such as a Taylor power series. When the problem is formulated in this way, an assumption for closing the system of

correlation equations is not required, since those equations are closed by the initially specified correlations or spectral quantities.

A Taylor series expansion, however, did not give realistic results (except for small times) when the limited initial experimental data

were used. An exponential series (eq. (5-221)), which was an iterative solution of the Navier-Stokes equations worked much better.
By specifying n spectra at an initial time, where n is an odd integer greater than or equal to 3, we have been able to predict

the evolution in time of those n spectra. We have not been able to obtain determinate results for n<3, except for weak turbulence.

From a practical standpoint it would be advantageous to calculate the evolution of the turbulent energy spectrum by specifying only

that quantity initially. Unfortunately, because of the coupling between the members of the infinite hierarchy ofmultipoint correlation

or spectral equations, it appears that we are not able to do that without making a closure assumption for the energy-transfer function,
so that a satisfactory theory would seem to require the initial specification of a number of interacting quantities.

The prediction of the evolution of the energy spectrum, in fact, requires the specification of an infinite number of initial

multipoint correlations or spectra (or functionals of those quantities) (ref. 4). If we were to claim that we should be able to predict

the decay of the energy spectrum by specifying at an initial instant only that spectrum, we would in effect be saying that the Fourier

components of the energy spectrum decay independently, as in the final period.
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Ofcourse, in practice, one can specify only a finite number of the lower-order quantifies. This has been called the "gap

problem" (ref. 61). It is the problem of bridging the gap between the infinite number of correlations which would theoretically be

necessary to calculate the evolution of the turbulence, and a finite specifiable number of correlations. This is a difficulty which

appears to be inherent in the problem of homogeneous turbulence and its initial specification. Most workers have attempted to bridge

the gap by assuming that the initial distribution of turbulent fluctuations is exactly Gaussian (zero odd-order correlations). However,
that is an artificial initial condition, probably never realized for real turbulence. The importance of accurate initial conditions is

shown, for instance, by the data of Ling and Saad (ref. 37), where measurements were made downstream from a turbulence-

producing waterfall. The turbulence decay law for the initial conditions produced by the waterfall is considerably different from

that for initial conditions produced by a grid.

Here we bridged the gap simply by specifying a sufficient number of initial correlations or their spectral equivalents to

calculate the evolution accurately. Fortunately, we do not have to specify the multipoint correlations or their spectral equivalents

themselves (those would be extremely difficult to measure), but only two-point funetionals of the multipoint spectral quantifies. It

was seen that the evolution of all the quantities which are specified initially can be calculated. In that sense the solution may be

considered complete. If, on the other hand, a large number of initial conditions were specified in order to predict the evolution of

say one quantity, it might be objected that the initial conditions were chosen to make the theory agree with experiment for that one

quantity. However, that objection cannot be made if the evolution of all of the quantities which are specified initially can be

calculated, as in the present theory. From a fundamental standpoint, the calculation of the evolution of those quantities is all that

might be expected from a theory of evolving turbulence. Note that the present (higher-order) theory provides the only deductive

procedure we have considered which works for high Reynolds-number turbulence (see figs. 35 to 42). Of course, with the continued

improvement of computers and numerical methods, direct numerical simulation may offer an alternative.
5.3.2.5A modified Kovasznay-type closure.--In the concluding remarks of the last section (section 5.3.2.4) we mentioned

the "gap problem"--the problem of bridging the gap between the infinite number of correlations or spectra which would

theoretically be necessary to calculate the evolution of turbulence, and a finite specifiable number of correlations (or spectra). A

theory for the decay of homogeneous turbulence was given which did not require a closure assumption in the usual sense, because

the spectral equations were closed by the initial specification of the turbulence. By specifying n spectra at an initial time, where

n is an odd integer greater than or equal to 3, the evolution in time of those n spectra was predictable. Good agreement with

experiment and previous analytical results was obtained for n = 3, 5, or 7, depending on the Reynolds number, higher Reynolds

numbers requiring more specified spectra.

It may be that the nature of the problem is such that three or more spectra have to be specified initially in order to calculate

the evolution of any of them (except for weak turbulence). However, particularly in an applied problem, three or more initial spectra
will often not be available. In that case possible courses of action are first, the required initial spectra might be estimated from

previous experimental or analytical results or second, the introduction of physical or mathematical hypotheses into the theory might

be allowed. In the remainder of the paper the latter course of action will be considered.

The analysis is limited to the two-point spectral equation, since a similar analysis, which also used the three-point equation

would require the specification of at least three initial spectra. The two-point spectral equation is

OE(g)/Ot = -(OS(Ic)/Olc) - 2vlc2E(I¢), (5 - 243)

where E is the energy spectrum function, t is the time, S is the energy transfer at wavenumber _ and v is the kinematic viscosity.
Equation (5-243) is the same as equation (5-158) if

This equation ensures that equation (5-162) is satisfied if S(0) = S(**) = 0.

In order to close equation (5-243), a modification of Kovasznay's hypothesis (ref. 17) is used. This hypothesis was chosen

mainly on the basis of simplicity, in order to illustrate how the initial specification of the turbulence might be simplified. Kovasznay's

original hypothesis assumed that S is a function only of the energy at _. Here, an effect of initial conditions is included. A sufficiently

general functional relation for our purpose is

S = S(_c, E, I'), (5 - 244)
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whereI'(K) is a dimensionless function of initial conditions. From dimensional considerations

Then, the net rate of transfer of energy into a wavenumber band di¢ is

(5 - 245)

or, from equations (5-245) and (5-246)

T dK:= -(OS/OK)ds:

_) /IE3/2K5/2 /
T=-_'t /-

It is desired to determine I(_) as a function of initial conditions at t = h. Thus at tb equation (5-247) becomes

T, = - _-'_'__,_1 J

(5 - 246)

(5 - 247)

or

I(le) =-_oTI (le')dle'[le5/2E :'2 (le)] -1 (5 - 248)

where the subscript 1 refers to values at the initial time tl. Equation (5-247) for the energy transfer function then becomes

T(,<)= 0<')d,<'[E?':(<)]-'}.
O1_ [ 0 L

(5 - 249)

Note that this expression for T(K) contains no adjustable constants or functions. Equation (5-243) becomes, by using equa-

tions (5-246) and (5-249),

E3 2(K)- -IE 1 (_:) =-2v_2E. (5-250)

Equation (5-250) has been solved numerically for the initial conditions of the decay data in reference 38, and the results
for various times have been compared with the data. The comparison is shown in dimensionless form in figures 5-43 to 5-45. The

quantity A is a constant with the dimensions of a length squared (ref. 38) and is related to conditions at a time to, ui is a velocity
component, and the overbar indicates an averaged value. The curve for S = 0 (weak turbulence approximation) is included in fig-
ure 5-43 in order to show the effect of inertia on the decay process. Inertial and viscous effects appear to be of the same order of

magnitude.
The plots for the decay of turbulent energy, the energy spectrum, and the energy-transfer spectrum show agreement

between theory and experiment which is probably within the accuracy of the data. Thus, as in the case of the theory of section 5.3.2.4

we were able to predict the evolution of the spectra which were used for specifying the initial turbulence. By introducing a simple

physical assumption, it has evidently been possible to reduce the required number of initial spectra from three or more (,preferably
more) to two, El and TF Moreover, as in our previous theory, the resulting equations contain no adjustable constants or functions.

However, unlike the previous theory, the present equations do not predict the evolution of the higher Reynolds-number data of

reference 37, except at short decay times (fig. 5-35).
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5.3.2.6 Further discussion ofhomogeneous turbulence without mean gradients---numerical solutions of the instantaneous

equations .--Additional insights into the physics of homogeneous turbulence can be obtained by studying turbulent or turbulent like
numerical solutions of the unaveraged Navier-Stokes equations. We have already looked briefly at several numerical solutions for

turbulence (ref. 33, and refs. 17, 49, and 50 of chapter 4); it was pointed out that numerical solutions of the unaveraged equations

are, in general deductive, since no external information (modeling) is required. Here we consider several numerical solutions in

somewhat greater detail (ref. 140).

The equations to be solved numerically, the incompressible Navier-Stokes equations, are

_2u ic)ui+3(UiUk) = 1 30 4-V (5-130)

_t _Xk p _X i _XkC)X k

where the mechanical pressure (see eq. (3-14)) is given by the Poisson equation

1 _21_ _2(UlUm)
= (5 - 150)

P 3xl _x 1 3x 1 3x m

and where as usual, the subscripts can take on the values 1, 2, or 3, and a repeated subscript in a term indicates a summation. The

quantities ui and u i are instantaneous velocity components, xi is a space coordinate, t is the time, p is the density, v is the kinematic

viscosity, and ff is _he instantaneous (mechanical) pressure. Equation (5-150) is obtained by taking the divergence of equa-

tion (5-130) and using continuity (eq. (3-4)).

The initial ui in equations (5-130) and (5-150) are given at t = 0 by

3

ui = Z an c°sqn" x.
n----I

(5 - 251)

Equation (5-251), unlike the initial condition used for most numerical studies of turbulence, is nonrandom. But that condition might

be considered comparable to the initial condition for turbulence generated experimentally by a regular grid in a wind tunnel. The

quantity a n is an initial velocity amplitude or Fourier coefficient of the velocity fluctuation, and qn is an initial wavevector. In order

to satisfy the continuity condition, we set (with a sum on i)

a_q n =0, (5- 252)

For the present work let

and

a I = k(2,1,1), ai2 = k(1,2,1),a_ = k(1,1,2),

q_ = (_l,l,1)/Xo ' q2 = (1,_l,1)/xo,qi 3 = ( l,1, _l )/x o '

(5 - 253)

(5-254)

where k has the dimensions of a velocity and determines the intensity of the initial velocity fluctuation. The quantity x0 is the

single length scale of the initial velocity fluctuation (one over the magnitude of an initial wavenumber component). The quantities
k and x0, together with the kinematic viscosity v and equations (5-253) and (5-254), then determine the initial Reynolds number

(_0) I/2 x0 Iv, since the square of equation (5-251), averaged over a spatial period, gives u02. In addition to satisfying the

continuity equation (5-252), equations (5-251) to (5-254) give

u, (5-255)
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attheinitialtime.Thusequations(5-251)to(5-254)giveaparticularlysimple initial condition, in that we need specify only one

component of the mean.Ls..quare.evelocity fluctuation. Moreover, for no mean shear, they give an isotropic flow at later times, at least

in the sense that u 2 = u2 = u2 , as will be seen. In this way the present initial conditions differ from those of Taylor and Green

(ref. 62). Those initial conditions do not give isotropic results even at large times (ref. 24). Note that it is necessary to have at least
three terms in the summation in equation 5-251) to satisfy equation (5-255). We do not specify an initial condition for the pressure

because it is determined by equation (5-150) and the initial velocities.

In order to carry out numerical solutions subject to the initial condition given by equations (5-251) to (5-254), we use a

stationary cubical grid with a maximum of 323 points and with faces at x_ = x i/x 0 = 0 and 2_. For boundary conditions we assume

periodicity for the fluctuating quantities; we consider turbulence (or a turbulent like flow) in a box with periodic walls. That is, let

and

U i * *()xj:2.+bj=(U,)x;-b; (5 - 256)

(5 - 257)

where b; = bj/x0,x; = xj/x 0 and bj is a variable length. These equations are used to calculate numerical derivatives at the

boundaries of the computational grid. For most of the results the spatial- and time-differencing schemes (which numerically
conserve momentum and energy) are essentially these used by Clark et al. (ref. 33). For the spatial derivatives in equations (5-130)

and (5-150) we use centered fourth-order difference expressions (see, for example, ref. 63). For instance, the fourth-order difference

expression used for Oui/Oxk is

Oui_ 1 [(Ui)n_2 _ 8(Ui)n_ I + 8(Ui)n+ 1 _(Ui)n+2 ]
axk)n = 12axk

where Ax k is the grid-point spacing, and the subscripts n, n + 1, etc., refer to grid points in the xk direction. Fourth-order difference

expressions are often considered more efficient than the usual second-order ones (ref. 64). (Spectral methods devised by Orszag
and associates are often still more efficient (ref. 64), but may be somewhat trickier to use.) Centered expressions (same number of

points on both sides of n, see above expression) can be used both at interior grid points and at the boundaries of the grid; when n

refers to a point on a boundary, values for ui outside of the grid which are required for calculating the numerical derivatives at the

boundary, are obtained from the boundary condition (eq. (5-256)).
For time-differencing we use a predictor-corrector method with a second-order (leapfrog) predictor and a third-order

(Adams-Moulton) corrector (see ref. 65). If m represents a time step, and (Ri)m the right side of equation (5-130), then at each

grid point in space, the second-order leapfrog predictor for ui at time step m + 1 is

,(1) 2At(Ri)m '( ui)rn+l = ( ui )m-I +

and the third-order Adams-Moulton corrector is

,(2) At (1)
(Ui)m+ 1 = (Ui)m +'_'[5(Ri)m+l +8(gi)m-(Ri)m_l],

ql)
(R _(l) in the above corrector is calculated by using (u i)m+l in the right side ofwhere At is the time increment. The quantity _ iJm+ 1

equation (5-130), where (u- _(1) is calculated from the leapfrog predictor. Note that the leapfrog method (so-called because it leapsx J/m+l
over the time step m), although unstable for all At when used by itself for Navier-Stokes-type equations, is stable when used as

a predictor.
The Poisson equation for the pressure (eq. (5-150)) is solved directly by a fast Fourier-transform method. This method of

solution was found to preserve continuity quite well (V. u = 0) except near the ends of some of the runs, where the solutions began

to deteriorate. [Another indication of incipient solution deterioration near the ends of some of the runs was that the first three terms

of equation (5-255) were no longer accurately satisfied.
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Two known types of numerical instabilities can occur in the present solutions: a viscous instability connected with the t-u'st

and last terms in equation (5-130), which occurs if vAt/(Ax k)2 is too large; and a convective instability connected with the first

and second terms (or the t'trst and third terms through equation (5-150)), which occurs if uiAt/Axk is too large. In these criteria At,

AM, and ui are, respectively, a time step, distance step, and velocity. Thus a particular solution should be numerically stable if,

for a given AXk, the time step is sufficiently small. Numerical stability is typically obtained when the solution varies smoothly from
time step to time step with no significant breaks in the slope from one step to the next.This is the case for all of the results given

here. For the present solution very good temporal resolution is obtained automatically when At is sufficiently small to give numerical

stability.

Temporal resolution is much easier to obtain than three-dimensional spatial resolution, which is more severely limited by

the storage and power of the computer. However, as will be seen, good spatial resolution is obtained for Reynolds numbers and times

not excessively large. Some of the averaged results are extrapolated to zero spatial mesh size in an effort to obtain _eater accuracy.
The fourth-order method of extrapolation (consistent with the fourth-order differencing used here) is given in reference 66. For the

results given here the corrections are negligibly small.
Development of turbulent like fluctuations. Figure 5-46 shows the calculated evolution of velocity-fluctuation

components (normalized by the initial root-mean-square velocity) at two fixed points in space for the initial Reynolds number

shown. Also plotted is the evolution of space-averaged root-mean square velocity fluctuations. Since there is no input of energy,

the fluctuating and space-averaged motions eventually decay to a state of rest. In spite of the nourandom initial condition

(eq. (5-2.51)), the velocity fluctuations have the appearance of those for a random turbulence. It is important to point out that the
fluctuations are not due to numerical instability since a large number of time steps (typically about 20) lies between changes of sign

of dui/dL

We note that the spatially averaged values in figure 5-46 follow approximately the decay law u 2 ~ t-n, where n ~ 3. This

lies closer to the value for n of 3.3 observed for turbulence downstream of a waterfall (ref. 37) than to the value 1.2 generally

observed for turbulence generated by flow through a grid in a wind tunnel (ref. 35). The decay law is evidently very much dependent
on the initial conditions for the turbulence.

Instantaneous velocity profiles on an off-center plane through the computational grid are plotted in figure 5-47 for various

times. At the initial time t = 0 the profile is regular and has the shape given by equation (5-251). However, it rapidly develops a

turbulent like (random) appearance as a result of the production of harmonics by the nonlinear self-interaction terms in equa-
tions (5-130) and (5-150). The profile shape is strongly time-dependent at early times. (Note that the vertical scale changes

drastically as time increases.) The symbols are located at gird points, where the instantaneous velocities are calculated. The eddies

(fluctuations) are in general well-resolved numerically, particularly since a high-order differencing scheme is used in the numerical

solution. (Fewer grid points may be required with a high-order scheme.) At any rate the curves appear to be well-defined by the
calculated values at the grid points. Further evidence that our calculated results are realistic will be given in figure 5-48.

Note that the smaller eddies die out faster than the larger ones because of the higher shear stresses between the smaller

eddies (see also the subsection on the interaction between spectral energy transfer and dissipation in section 5.3.2.2). For very large

times essentially all of the higher harmonics have died out and the motion becomes linear. Then the profile assumes a regular shape

not unlike that of the initial profile.

We tried perturbing the initial condition to see if the flow in figures 5-46 and 5-47 is sensitively dependent on initial

conditions, hut the results were inconclusive. It appears, however, that the turbulent like appearance of the flow is not due to sensitive

dependence on initial conditions. That is not to say that sensitivity to small changes in initial conditions is not present in the flow,

but the turbulent like fluctuations evidently decay before such effects can be detected (before a perturbed flow has had a chance to

diverge from an unperturbed one). This leads to the question as to whether an initially nonturbulent low Reynolds-number decaying

flow, whether experimental or numerical, can ever show the effects of sensitive dependence on initial conditions. The turbulent like

appearance of the curve in figures 5-46 and 5-47 is more likely caused by a proliferation harmonic components by the nonlinear

terms in equations (5-130) and (5-150). But if the decay is prevented by a forcing term, the effects of sensitive dependence on initial
conditions can become important, even at the low Reynolds number in figures 5-46 and 5-47 (see chapter VI). Moreover, we have

shown that a higher Reynolds-number decaying flow can be affected by sensitive dependence on initial conditions before the

turbulent fluctuations have decayed. (J. Comp. Phys., June, 1992.)

Evolution of me,m-square velocity fluctuations. The effect of computational-mesh size on space-averaged values of u2,

u 2 , or u2 (all three space-averaged values are equal) is shown in figure 5-48. Surprisingly good results for the decay arc obtained,

even with coarse grids.
Figure 5-49 shows the calculated evolution of mean-square velocity fluctuations (spatially averaged) for a series of initial

Reynolds numbers. As the Reynolds number increases (v and initial length scale x0 held constant), the rate of decay of u 2 increases

sharply, as in experimental turbulent flows (fig. 5.21). This can be attributed to the nonlinear excitation of small-scale turbulent like

fluctuations at the higher Reynolds numbers. The high shear stresses between the small eddies cause a rapid decay.
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Microscalesandnonlineartransferofenergytosmallereddies.Thedevelopmentofthesmall-scaleeddiesisseenmore

clearly in figure 5-50, where the microscale Z, normalized by its initial value, is plotted against dimensionless time. The microscale

is defined by

For homogeneous turbulence with no mean gradients, _. can be calculated from equations (4-142) and (5-258):

uiuik2 o, -v _ . (5- 259)
duiu i/dt

As the Reynolds number increases, the small-scale structure becomes finer. The microscale decreases until the fluctuation level

(inertial effect) is low enough so that viscous forces prevent a further decrease. After 7.decreases to a minimum, it begins to grow.

(Results for coarser grids were not qualitatively different from these, but the minima were somewhat higher.) The increase ofT. at
later times is due to the selective annihilation of eddies by viscosity, the small eddies being the first to go. Thus, at large times, only

the big eddies remain. It is this period of increasing 7. that is generally observed experimentally in grid-generated turbulence

(turbulence observed downstream of a grid of wires or bars whose plane is normal to the flow in a wind tunnel). The increases of

_, with time observed experimentally (ref. 4, fig. 7.2) are generally of the same order as those in figure 5-50 (doubling the time

increases 7. by a factor of about 1.5). The early period, in which 7. decreases with time, is of interest as illustrative of inter-

wavenumber energy transfer. In order to generate the small-scale structure, turbulent energy must be transferred from big eddies

to small ones.
For homogeneous turbulence without mean gradients the equation for the rate of change of turbulent kinetic energy,

equation (4-142), reduces to

(u--_i _ _ui _ui (5-260)
t--7-)=  x--7

That is, only viscous dissipation contributes to the rate of change of kinetic energy, there being no indication that nonlinear transfer

of energy between scales of motion is taking place. There may seem to be a paradox here in view of the large transfer of energy to
small eddies indicated in figure 5-50. This is as it should be, however, since energy transfer between wavenumbers or scales of
motion should not contribute to the rate of change of total energy. In order to consider inter-wavenumber energy transfer, we must

use two-point equations. Thus it is shown in section 5.3.1.2 that the self-interaction transfer term Tij0¢) in the two-point spectral

equation has the property that

,1__**f*"Xij(Ic)dl¢ = 0, (5- 98)

as a spectral transfer term should. The quantity 1¢ is the wavevector. It is the spectral transfer term T0(K) or its Fourier transform

7
-3(u iu iu [ -u iu kuj)/_r k in equation (5-133), that is responsible for the generation of the small-scale structure in figure 5-50.

Those terms come from the nonlinear term --_(UiUk)/_Xk in the unaveraged equation (5-130).

Although equation (5-98) shows that Tij can transfer energy between wavenumbers without contributing to the rate of

change of total energy 3u--_/3t, it says nothing about the direction of the transfer or how important it is. For that we need

calculations such as those in figure 5-50, which show that significant energy is transferred to smaller eddies (see also figs. 5-15

and 5-16). The energy transfer can be thought of as due to a breakup of big eddies into smaller ones, or as a stretching of vortex

filaments to smaller diameters. In spite of this transfer to smaller eddies, experimental results generally show a growth of scale

(ref. 4, fig. 7.2). This is because those results are usually for the later period shown in figure 5-50 where, although energy is

transferred to smaller eddies, the annihilation of small eddies by viscous action eventually wins out. The early period shown in figure

5-50 and in figure 2 of reference 62, is of particular interest, in that the nonlinear transfer effects are truly dominate there; a sharp

decrease in scale actually occurs as energy is transferred to smaller eddies.
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Vorticity and dissipation. For homogeneous turbulence without mean gradients one can obtain a relation between

the viscous dissipation term in equation (4-142) and the vorticity or swirl in the turbulence. The vorticity m is defined as the
curl of u:

=vxu(x)
or

_Uk

(oi = £ijk 9Xj '

where l_ijk isthealternatingtensor(seesection2.5.1).Then

_U i bU t = (_il_jm -_im_jgl _ui_ _ug
_k(ok = l_ijkl_tmk_xj _x m /_}xj bxm

(5 - 261)

(5- 262)

Bulb ecause

__tl i bU i _U i _Uj

bxj 9xj bxj bx i
(5 - 263)

(5- 264)

(5 - 265)

for homogeneous turbulence. Equation (5-263) then becomes

Ok(O k _= 03 2 = _Ui Oui - £ (5 -- 266)
_Xj t_Xj V

Thus, for homogeneous turbulence or turbulent like fluctuations, the mean-square vorticity is just the rate of viscous dissipation e

of turbulent energy divided by the kinematic viscosity (eq. 4-142). So the more intense the swirl in the turbulence, the faster it

dissipates.
Dissipation, vorticity generation, and pressure fluctuations. The energy dissipation term, the only term contributing

to the rate of change of kinetic energy for homogeneous turbulence without mean gradients (eq. (5-260)) is plotted in figure 5-51.
That is also the mean-square vorticity (see eq. (5-266)), but the two are distinct physical entities. Although the curve for zero

Reynolds number, where nonlinear effects are absent, decreases monotonically to zero, the curves for higher Reynolds numbers

increase sharply for a while and then decrease. Thus the nonlinear terms in the Navier-Stokes equations are very effective vorticity

generators and greatly enhance the dissipation at small and moderate times. For large times they appear to have the opposite effect,

evidently because the turbulence itself decays rapidly to zero. Nonlinear effects, although they do not appear explicitly in the

evolution equation for uiu-'-"_. (eq. (5-260)), thus alter greatly the evolution by altering the dissipation term.

Figure 5-52 shows mean-square pressure fluctuations plotted against dimensionless time. The enhancement of the pressure

fluctuations, although not as great as that of the vorticity or dissipation, again is due to nonlinear effects: In this case the nonlinear

terms on the right side of the Poisson equation for the pressure cause the effect.
Further discussion and summary of the processes in isotropic turbulence. Nonlinear velocity and pressure terms do

not appear in the evolution equation for uiu---_(eq. (5-260)). But we can calculate root-mean-square values of the nonlinear terms

in the instantaneous evolution equation (5-130), as well as of the linear term. Three measures of the relative importance of inertial

(nonlinear) and viscous effects are shown for a moderate Reynolds number in figure 5-53. The ratio of the nonfinear velocity term

to the viscous term and the ratio of the pressure to the viscous term in equation (5-130), together with the microscale Reynolds

number, are plotted against dimensionless time. The terms are space-averaged root-mean-square values. All of those measures show
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avariationfromaratherinertialtoaweakfluctuatingflow.Forinstance,R_.variesfromabout90to0.7.Thisisamuchgreater
variationthanhasbeenobtainedexperimentallyforasinglerun.ThecurvesforthetermratiosliesomewhatbelowthatforR)..They
indicatethatexceptatearlytimesthenonlinearinertialeffectsassociatedwithvelocityandwithpressuredonotdiffergreatly.

Theappearanceofbothnonlinearvelocityandpressureeffectsinequation(5-130)andfigure5-53mayseemsomewhat
paradoxicalinviewofequation(5-260),whichsaysthatneithercontributesdirectlyto o3uiui/03t. The nonlinear velocity effects

were already discussed in this section; it was pointed out that such effects should not appear in equation (5-260), since they only

distribute energy in wavenumber space and so do not directly alter the total energy. Although there is no nonlinear velocity term

in equation (5-260), such a term appears in the two-point equation for t9u_-'/_. That equation, for the present case, is obtained

from equation (5-133) as

_"--7 ^ t)2U_ ' _ / , , _ •

..... , - 3_-uiu(i),0t ulul- Zv _-_-_k --'_k'k _uiuiu k UiUkUi) -

where r is again the vector extending from the unprimed to the primed point, and the pressure terms drop out because of continuity.

The last term, where the parenthesis indicates no sum on i, is a consequence of the isotropy of the turbulent like fluctuations. The

equation for the rate ofchange of each component of u iu--'--_is contributed to by the nonlinear velocity term -(0/3r k )(u iu_u_ - u iu ku---"_.'),

but there is no contribution from the pressure. The strong effect of pressure shown in equation (5-130) and figure 5-53 must be

contained in higher-order equations in the hierarchy of averaged equations (moment equations) (section 5.3.2.2 and ref. 22). Thus,

while two-point averaged equations contain a nonlinear effect of velocity, we must consider higher-order multipoint equations to

obtain an effect of pressure. Terms in the unaveraged equations shown in figure 5-53 (averaged over space after the solution has
been obtained) include effects of all orders. (Effects contained in the numerical results may, however, be limited by the fineness

of the numerical grid.)

Although pres sure effects appear in figure 5-53 and equation (5 - 130), the physical significance of those effects is somewhat
elusive, in contrast to the effects of viscous dissipation and spectral energy transfer. If the turbulence or turbulent like fluctuations

are anisotropic, a clear effect of pressure fluctuations is that they transfer net energy among directional components (see eqs. (4-

140) and (4-142) and the discussion in section 4.3.3.1). That will be discussed further when mean gradients are considered. If, in

addition, the turbulence is inhomogeneous, pressure can produce a net spatial diffusion of energy (eq. 4-142). Those are evidently

the only physical effects of pressure fluctuations (at least that we know about). Thus, if the turbulence or turbulent like fluctuations

are homogenous and isotropic, as they are here, it seems reasonable to attribute the observed pressure effects in the unaveraged

equations (eq. (5-130)) to those processes. Even though there is no net interdirectional transfer or spatial diffusion of turbulence

when the turbulence is isotropic, those processes can still be instantaneously or locally operative. They could, for instance, cause

a diffusion of tagged particles. According to figure 5-53, they have an important indirect effect on the evolution of the turbulence.
From the findings of the present section we conclude that the following processes occur in isotropic turbulence: nonlinear

radomization by proliferation of harmonic components and/or by sensitive dependence on initial conditions (to be discussed further

in chapter VI), nonlinear spectral transfer of turbulence among wavenumbers or eddy sizes (mainly to smaller eddies), spatial
diffusion and transfer of turbulence among directional components by pressure forces, with zero net diffusion and transfer into each

component since the turbulence is isotropic, generation of vorticity or swirl, and dissipation of turbulence into heat by viscous action.
From this description, as well as those in section 5.3.2.2 and chapter VI, isotropic turbulence appears interesting and many-faceted.

(This is in contrast to the characterization sometimes given that isotropic turbulence is tired or fossil turbulence.)
5.3.2. 7 Turbulent diffusion and multifime-raultipoint correlations.---One of the basic characteristics of turbulence is its

great diffusive power. For example, the rate of diffusion of a glob of cream into a cup of unstirred coffee by molecular action is

extremely slow. However, that rate is increased by orders of magnitude by a slight stirring (turbulent) action.

The theory of turbulent diffusion was originated by G.I. Taylor in 1922 (ref. 67) and has since been studied by a number

of authors (e.g., refs. 68 and 69). To illustrate turbulent diffusion, we calculate approximately the diffusion of particles originally
concentrated at a source into a decaying turbulent field (ref. 70). In order to simplify the problem, assume that the velocity

fluctuations are small.
The distance in the x2--direction that a fluid particle orginally at x2 = 0 travels during the time interval t" - ta is

_t _s
Y(t') = u2(t)dt. (5-267)

a
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Multiplication of this equation by u2(t') = dY / dt' gives

u2 (t')Y(t')= ldY._ = ft" u2(t)u2(t')dt" (5 - 268)
2 dt ,Ita

Taking the particle average over all the "marked" particles that were originally concentrated at a source at x2 = 0 and integrating

with respect to t" result in

y2= 2f tb t'f [u2(t)u2(t' )] dt dt',
,ira ,Jta 1 JL

(5 - 269)

where the subscript L designates a Lagrangian correlation which is based on the velocity of a moving particle at different times,

rather than on the velocity at a fixed point at different times. The latter is generally called the Eulerian time correlation. Since it is
easier to measure or calculate than the Lagrangian correlation, we would like to be able to relate the two types of correlations. For

small velocity fluctuations it has been suggested by Burgers (ref. 71) that they should not differ greatly. This can be shown as follows:

Consider fast the Eulerian time correlation u2(t)u2(t" ), where u2 is the component of the velocity in the x2 direction;

similar results could be obtained for the other velocity components. The Eulerian correlation can be expanded in a Taylor series as

u2(t)u2(t') = [u2(t)u2 (t')]t,=t + [_7, u2(t)u2(t'i]t,=t (t'-t)+ll _0-_2 u2(t)u2(t'il (t'- t)2 +...
Z Lo_ Jt'=t

2 o 2(t')
=u2(t)+u t u_,.,Lr'xFa2u2(t')]_Jt.=t (t'-t)2 +

(5 - 270)

Similarly, the Lagrangian correlation is expanded as

' t . .rd2u2(t')]

[u2(t)u2(t')]L=U22(t)+u2(J_]L dt Jt'=t 1,,,(t'-t)2+= ....

(5 - 271)

where the substantial or particle derivative is given as

du2(t') _ au2(t') _u2(t" )
--/+U k --

dt' at' ax k

For small velocity fluctuations,

du2(t')_ au2(t')
B

dt" at"

Also

(5-272)

d2u2(t')_ a du2(t') - a2u2(t ")

dt '2 - at" dt" - at ,2
(5 - 273)
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andsoonforhigher-orderderivatives.Fromeqautions(5-270)to(5-273),

u2(t)u2(t') = [u2 (t)u2 (t')]L (5 - 274)

is obtained, which was the relation to be proved. It should be noted that relation (5-274) is most accurate for small values of

t' - t as well as for small velocity fluctuations, inasmuch as the approximate relation (5-273) had to be applied a greater number

of times to the higher-order derivatives in equation (5-271) than to the lower-order ones (see eq. (5-273).

It should also be emphasized that equation (5-274) was obtained for the case of no mean motion. Thus, Eulerian time
correlations measured with a stationary instrument in a moving stream may differ considerably from the Lagrangian correlations.

However, if the instrument is moving with the stream, the two correlations will be approximately equal if the turbulence level is

not too high (see ref. 72).

If the approximate relation (5-274) is introduced into equation (5-269) and it is noted that, for isotropic turbulence,

u2(t)u2(t' ) = ui(t)ui(t')/3, we get

= Itt]ui(t)ui(t') dt3 tI

To obtain the time correlation ui(t)ui(t' ) in equation (5-275), first write the Navier-Stokes equations for the points

P and P" separated by the distance vector r and the time increment At:

au i a(UiUk)- 1 a_ a2Ui
..... +V-- (5 276)

at aXt p aX i aXkaX k '

UjUk 1 3o' _2u i
--+--= .... +V-

at' ax[ 0 ax ,ax;,'
(5-277)

where, as usual, the subscripts can take on the values 1,2, 3 and a repeated subscript in a term indicates a summation. The quantities

ui and u i are instantaneous velocitycomponents, xi is a space coordinate, t is the time, p is the density, v is the kinematic viscosity,

and _ is the instantaneous mechanical pressure. Multiplying the first equation by u i , the second by ui, and taking space averages

result in

l oo -q- (5-278)
o_Xt /2 o_Xi O_XkO_Xk

and

aUTj _(_) 1 a(_'U'--'_ a2UiUj
+ = +V--

at' ax_ pax i ax[ax_ '
(5 - 279)

where the fact that quantities at xi and t are independent of x_ and t' was used. By introducing the transformations

a / ax i = -3 / ari, _ / 3x_ = a / ar i , (3 / _t)t, = (3 / at)A t - a / aAt, and a / at' = a / _At, which are obtained by writing a correlation

as a function of ri, t, and At and differentiating, the following equations are obtained from (5-278) and (5-279):

auiu--7" a "" t a , 1 a _-7"7 1 a ,. a2U-'_
_--- u .u-u. (-r,-A, t + At) - -- uiu t uj (r, At, t) = ----ou .... ou. (-r,-At, t + At) + 2v--,

at ar k J K _ ar k P ari J P arj t arkark
(5 - 280)
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Ouiuj 0 , 1 _ , _2UiUj
+w---ulu u.(-r,-At, t+At)=----_--ou (-r,-At, t+At)+v_ (5-281)

OAt ark , k , p OTj i _k_k

Equations (5-280) and (5-28 I) are the space-time equivalents of the two-point equation (5-133). They were obtained in a slightly

different form, for the case of isotropic turbulence, by Bass (ref. 73).

In order to convert equations (5-280) and (5-281) to spectral form, the following three-dimensional Fourier transforms are
introduced:

u iu] (r, At, t) = _. ¢Pij(r., At, t)eiX'rdlc (5 - 282)

uju ku_ (r, At, t) = ___ _jki (K, At, t )ei_'rdx (5 - 283)

ouj (r, At, t) = _, _.j (r,. At, t)eiX'rdK, (5 - 284)

where 1_ is a wavevector and dK: = dKldlC2d_: 3. By introducing these transforms, equations (5-280) and (5-281) become

_gliJ0t_"iX:k¢Pjki(--X:'-At't + At)- iX:k¢Pikj(X'At't) = P ilci_'j -P ilcj_'i(-x:'-At't + At)- 2vx:2q)ij (5-285)

1

v'rU + i_:kq_iki (-K,-At, t + At) = - ± _:j_'i (-IC,-at, t + At) - vg:2¢Pij.
_At J P

(5 - 286)

In order to convert the tensor equations (5-285) and (5-286) to scalar equations, contract the indices i and j:

_g)ii + 2Vg72q)ii= i_kq)iki (K, At, t) + i(-lC k)_0iki(--it, -At, t + At)
0t

(5-287)

+ VK2q)ii = i(-Kk )q)iki (--K, -At, t + At).
(5-288)

The pressure terms drop out of these scalar equations because of the continuity relation 0u i/0x i = 0u_/0x_ = 0 and the relation

0/0x i = -bfi)x_ (see eqs. (5-278) and (5-279).

Equations (5-287) and (5-288), as they stand, contain too many unknowns for solutions to be obtained. For the final period

of decay, however, the triple correlation or inertia terms should be negligible compared with the double correlation terms. Thus,

the terms on the right sides of equations (5-287) and (5-288) are neglected, and the following solutions are obtained:

and

(5 - 289)

(5 - 290)

In order for these equations to be consistent,

E = f(g:)e-V_C2Ate -2vxz (t-t0), (5-291)
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where the energy spectrum function E = 2_k-'29ii has been introduced. Evaluate f0¢) by letting E = J0g:4/3_ when g is small (Lin,

ref. 74). This gives

J K4 -2VX2(t-to+lAt_
E = 0__.0__e k 2 ), (5- 292)

37t

where Jo is a constant that depends on initial conditions. For At = 0, equation (5-292) reduces to the usual expression for the energy

spectrum function in the final period, which involves only one time. By integrating equation (5-292) with respect to x:, the time

correlation is obtained as

,0 (2 = 32(2_) 1/2 V-5/2 t-t0
(5 - 293)

Equations (5-275) and (5-293) give, for diffusion by isotropic turbulence in the final period of decay,

1],oV-5,2[lr 1 -,0)''2+",) 't'a 1 }(t a-t o +At b/2) 1/2" '

(5 - 294)

where ta is againthetimeat whichdiffusionbegins and Atb=tb-taisthetimeduring which the root-mean-sq uare turbulent diffusi°n

_--_1/ 2distance goes from 0 to . For large diffusion times,

jo v-5/2

Y2 = 9.q_(ta - to ) '
(5 - 295)

That is, the turbulent diffusion distance reaches a constant value and becomes independent of Atb for large diffusion times. This

differs from the case of stationary turbulence, where YI_ increases linearly with Atb for large diffusion times (ref. 67). The reason

it reaches a constant value for decaying turbulence is that for large times the turbulence goes to zero, so that no more turbulent

diffusion can take place. For early times (small ta - to), both equations (5-294) and (5-295) show that the diffusion distances are

much larger than those for later times because of the higher turbulence level at early times.
In reference 70 the analysis for turbulent diffusion was extended to somewhat earlier times than those for which equation

(5-294) is applicable, and the analytical results were compared with the experiment of Uberoi and Corrsin

(ref. 75). For the comparison, the diffusion time in the analysis is the distance downstream from the beginning of the line source

(of heat) in the experiment divided by the speed of the mean stream. The agreement between theory and experiment was quite good

for large decay times (low turbulence levels) and for small diffusion times; for other conditions, some deviation was indicated. The

latter was apparently due to the assumed equality of Eulerian and Lagrangian correlations, that equality being the most accurate for

small velocity fluctuations and short diffusion times (see discussion following eq. (5-274)).
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5.4HOMOGENEOUSTURBULENCEANDHEATTRANSFERWITH
UNIFORMMEANVELOCITYAND/ORTEMPERATUREGRADIENTS

In section 5.3 we considered the simplest type of turbulence--statistically homogeneous turbulence without mean

gradients. The turbulence processes occurring there are viscous dissipation, nonlinear directional transfer of turbulent activity, and

nonlinear spectral transfer between scales of motion. The absence of other, often overshadowing processes, makes homogeneous

turbulence without mean gradients an ideal vehicle for studying dissipation, nonlinear directional transfer, and nonlinear spectral
transfer. Those processes, particularly nonlinear spectral transfer and its interaction with dissipation, were discussed in some detail
in section 5.3.

However, real turbulence usually occurs in the presence of mean gradients, particularly in the presence of mean shear. So

we consider here a slightly more complicated turbulence than that in section 5.3 by studying the effect of uniform mean gradients
on homogeneous turbulence and heat transfer. In that way we introduce turbulence production and other processes which depend

on mean gradients.

Following a plan similar to that in section 5.3, we first consider the basic equations for homogeneous turbulence with mean

gradients. Then we will give some illustrative solutions. As in section 5.3 the analytical solutions considered will usually be of the

simplest kind, in order to avoid excessive mathematical complexity. Somewhat more widely applicable numerical solutions will

also be discussed where available and appropriate.

5.4.1 Basic Equations

The euqations for the fluctuations ui, x, and o were obtained in the last chapter as equations (4-22) to (4-24):

OUi _(UiUk) 1 _(O - Oe) _2U i _ OU i _ Ou i _uiu k

_"'_ = _x k P _xi + V _- _gi'_- Uk _--'_k - Uk _-ff_k+ _X k
(4 - 22)

and

= _)2q; 3T _ 0xu kO(_Uk ) + , (4 - 23)
- -u'

1 3(o-ae)= O2(uiuk) OX_2Ou i OU k 32UiUk
P 0XiO_Xi oqxi_x k _gi _X i _Xk 0x i + o_xi0x k ,

(4-24)

where the subscripts (except e) can take on the values 1, 2, or 3, and a repeated subscript in a term signifies a summation. The

instantaneous velocities, temperatures, and mechanical pressures have respectively been divided into mean and fluctuating

components Ui and ui, T and x, and P and o. The quantity xi is a space coordinate, t is the time, O is the density, v is the kinematic

viscosity, gi is a component of the body force, and 13- - (I/p) (Op/OT) o is the thermal expansion coefficient of the fluid.

The quantities T e and oe are respectively the equilibrium temperature and pressure. In obtaining the buoyancy term in equa-

tion (4-22), the density is assumed to depend effectively only on temperature and is not far removed from its equilibrium value (value
for no beat transfer). Note that the equilibrium temperature is uniform whereas the equilibrium pressure is not. We retain buoyancy

effects in equations (4-22) to (4-24) because those effects will be considered in some of the cases to follow.

Equations (4-22) to (4-24) apply at a point P in the turbulent fluid. Similar equations at another point P' can be obtained

simply by priming the variables and changing the subscript i to, say, j. Equations involving correlations between fluctuating

quantities at points P and P" can than be constructed by methods similar to those used for obtaining equation (5-133), or for equations

(4-147) to (4-150) in the last chapter. The resulting equations for homogeneous turbulence with uniform velocity and temperature

gradients are

m

_UiU i -----Tc_Ui • _Uj _U k equiu _ +_(UiUiU__UiUkUj )
_t +UkUj _X----k+ UiUk _X'--_+ _X---7rl _r k _'k"

- -- |+2V _gi_jj-_gjui _',
pt, J

(5-296)

66



3_7 --"-7 3T _--'r" 3Uj 3Uk r 3_u_ 3 /: _-----r_ 1 3_o--7 32x'_u_

3t * j 3x k _ dXk ark ark k j K K Jl p 3rj

(5 - 297)

(5 - 298)

3u--_ --7- 3T _ 3Ui + 3Uk r 3u--_7 3 [' , , _ 1 3U'_--7 32u-? "7_+_/ui'_ u k - UiUk_') = + (0_ + V)_ -- [_gi'_'¢' ,
_+U.U_+U,._; ----'- _ t ari arkark

3t ! K 3X k _" dx k dxg ark ark _' P

(5-299)

and

1 32 _ = --2 3uTk 3Uj 32 _ 3u i_----'7

p 3rjarj 3rj 3x k arjark _gJ W'

- 2 -" +[3gi "_r i 'p ariari ark axi arprk

1 32_ "7 = 2 3ui'_" 3Uk

P ariari ark 3xi ariark + Pgi

(5 - 300)

(5 - 301)

(5 - 302)

1 32;_"_; _23"C-'-_kk3Uj 32_ 3_'7 (5-303)

p arjarj = arj 3xk arjark 13gJ-_'rj '

where, by virtue of the uniformity of the mean velocity gradients we have set 3U i/3x_ = 3Uj/3x k and U_ - U k = rt 3Uk/3xt.

5.4.2 Cases for which Mean Gradients are large and/or the Turbulence is Weak

Equations (5-296) to (5-303) form a determinate set if we neglect terms containing triple correlations. As in section

5.3.2.1, where mean gradients are absent, those terms can be neglected if the turbulence is weak enough. However, it is

important to notice that the turbulence in a flow with mean velocity or temperature gradients may not have to be as weak as

that in a flow without mean gradients. If some of those gradients are large, the terms containing them can be large compared

with the triple correlation terms, even if the turbulence is moderately strong or strong. Thus the applicability of the solutions to

be obtained here is much wider than that of the solutions in section 5.3.2.1. The mean-gradient term should, however, be large

enough to give a sensible solution.
For converting equations (5-296) to (5-303) to spectral form, we introduce three-dimensional Fourier transforms

defined as follows:

UiU'-'--_= I2 @ijeiK:'rdK' (5-- 304)

Oal'--]= I2 X'jei_'rdK' (5- 305)

ui(Y-"-7= I2 _'{eiK'rdl¢' (5 - 306)
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_7 = _. _eiK.rdll_, (5 - 307)

_7 = f_. _,ei_-rdK, (5 - 308)

"_tl-"_= f _._.]¢jeil_'rdl_, (5--309)

= ff_._.T_eiK'rdlc, (5 - 310)

and

= j'._.ei_'rdK, (5 - 31 1)

where x: is the wavevector and dK = ds:ld_:2d_: 3. The magnitude of K has the dimension 1/length and can be considered to be the

reciprocal of a wavelength or eddy size. Then, from equation (5-304),

O3UiU j ** oTM ..

re ---_--k = r k + _tk(Pij eIK'rdl_, (5-312)

where, as usual, 8¢k is the Kronecker delta. Equation (5-312) can be obtained by differentiating equation (5-304) with respect to

rk, writing the inverse transform, and then differentiating with respect to lq_.Taking the Fourier transforms of equations (5-296) to
(5-303) results in

_t I'g)kJO'_k +g)ik _×k _×t _:k _'_'t-t +Sfk%J ----- i_:J_'i-i_:i_'j)-2v_:2%j-_giTJ-_gJTi' (5-313)

05 t , °qT °_Uk (K aS 1
"_'+[Tk + Tk) Oxk Ox t _, k OKt +StkS) =-2_K:28, (5- 314)

(5-315)

07: 3T + , OU i _U k _'/:
"2_'tl+ q)ik _--_-k Tk_x k _Xt /_k _'_-t + 8gk](_l -- -(_ + V))C2T_+ p i_'_- [3gi 8'

(5 -316)

0Uj . ,

-! K2_,_p = -2i_j 9ik _ - _gjlKj_'i,
(5-317)

-_)C2_j = 2i)c k OUk_ij _)x"--"7 + _giilciTj'
(5-318)
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and

•0Uk

_ L K2_ = 2i_ k )'i _x i + _gii_:i 8' (5 - 319)
P

_I ¢2_,= -2it:j7k 3Uj _ _SgiiKiS. (5- 320)
p aXk - .

Equations(5-313)to(5-320)canbeusedtostudyanumber ofcasesinwhichhomogeneous turbulenceisactedon bylarge

mean gradientsand/orforwhich theturbulenceisweak. Some ofthosecasesarcconsideredinthefollowingsections.

5.4.2.] Uniformlyand steadilyshearedhomogeneous turbulence.--Theeffectofauniformtransversevelocitygradient

on a homogeneous turbulentfieldhasbccn consideredby a number ofauthors(e.g.,rcfs.7,8,and 76 to78).The treatmenthere

parallelsthatinreference7.That referencecarriedtheproblem tothepointofcalculatingspectraand ofstudyingtheprocesses

associatedwith theturbulence.

Equations(5-313),(5-317),and (5-318)become, fora uniformtransversevelocitygradientdUl/dX2and no buoyancy

(gi : 0),

dU1 +8 "^ dUl r c)(Pij dU1 P"(pij+_il(p2j dx---_ jlWi2d'_'2- 1_-'_"2 d-_2 =- (_iKi_,j+iKj_,_)__2VK2tPij, (5--321)

-_iKj_ _lKj dUl: 27(Pi2 dx"'_'

and

_iKi_, j = 2 K1Ki dUl

Substituting equations (5-322) and (5-323) into (5-321) gives

(5 - 322)

(5 - 323)

( KIK i KIKj

dU I t}q)ij dU! ÷_2._(p2 j "_dU1 _2vlc2q)i .. (5-324)_'q)ij --(_il(P2j +_jl_i2)d'_2 + Kl 0K 2 dx 2 + 2"-_ "q)i2= ) dx2 J

Equation (5-324) indicates that g)ij is a function of the components of K as well as of its magnitude. One can obtain a quantity that
is a function only of 1¢by writing (Pij in terms of spherical coordinates and integrating over the surface of a sphere of radius 1¢,as

suggested by Batchelor (ref. 4). This gives

_iJ0c) = 1 9iJ0C)dA0¢)" (5 - 325)
A

The quantity _/ij is the value of (Pij averaged over all directions and multiplied by A. Similarly, each term of equation (5-324) can
be averaged. If we denote the average of the second term (multiplied by A) by Pij (n) dUt / dx2, the average of the third term by

T;'(K) dU 1 /dx 2 , and the average of the fourth term by Qij (K) dUl/dX2, then the averaged equation becomes

dU1 . dU1Vij0¢) = Pij 0¢) dx-'_" + Ti_0¢) dx__T+ Qij0c) __ 2vlc2Vij. (5 - 326)

Contraction of the indices i and j in equation (5-326) gives

V.. dU1 + Ti'_dUl - 2VK:2V.. ,
_" II/ii = n dx 2 , dx 2 n

(5 - 327)

1
where "_q/ii = E, the energy spectrum function.
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Interpretation of terms in spectral equations.The quantity Qij (dUl/dx2), which corresponds to the pressure-force term
in equation (5-296), does not appear in the contracted equation (5-327) as pointed out in reference 76. That this is the case can be

seen by substituting 0 / _i = 0 / 0x_ and 0 / 0rj = -b / 0xj in the pressure-force term in equation (5-296) and applying continuity to

the contracted equation. Thus, as in the case of homogeneous turbulence without a mean velocity gradient, the pressure-force term

exchanges energy between the directional components of the energy but makes no contribution to 0Vii/&.

In order to interpret the quantity T;_ or Ti]', it is noted that r_0uiu_pr , in equation (5-296) and _(0,,j/0_2) in

equation (5-324) are related by

Evaluating this equation for r = 0 gives

and thus

_UiUj

r 2 0r---T-=--I2KlO(PiJeit'rdK.0K 2
(5-328)

f2gl O'ij d1¢ = 0, (5 - 329)

oo I,

Tii (_:) dr = O. (5 - 330)

Thus, Ti]" gives zero contribution to _uiuj/_t. However, it can alter the distribution in wavenumber space of contributions to

19u-_/bt and thus can be interpreted as a transfer function. The quantity Ti_' was evidently first interpreted as a transfer function

in our reference 7. More will be said about it later when spectra of T_ are computed. The quantity T_¢, which arises because of

the velocity gradient, has a function similar to that of the transfer term arising from triple correlations (neglected here), but should

not be confused with the latter. The transfer term T_ (dUl/dX2) can be important even in the final period, whereas that arising from

the triple correlations is absent in that case. Note that in the general case, where the velocity gradient is not uniform, the transfer

term will be associated with an average velocity gradient (U_ -U l)/r 2 (see the fourth term in equation (4-147)).

In order to complete the interpretation of terms in equation (5-327), we note that Pii (dUl/dx2), which corresponds to the
second and third terms in equation (5-296), represents the production of turbulent energy at wave number i< by work done on the

turbulence by the velocity gradient. Finally, the term -2v1¢2_ii is the usual dissipation term.

Solutions of spectral equations.Next, solutions will be given for some of the components of the tensor ,ij in equa-
tion (5-324). The nine equations represented by equation (5-324) are simultaneous first-order partial differential equations in the

independent variables t and g:2 and can be solved by methods given, for instance, in reference 79.

The component of ,ij most easily obtained is q)22, inasmuch as it is independent of the other components. Thus, the
expression for tP22is obtained by solution of equation (5-324) as (ref. 79)

'22 = {f[)cl,al2)Cl(t-t0)+)c2,)c3]/)c4} exp(-2v(t-to)[ )c2 +3)c2aI22(t-to) 2 +al2)CllC2(t-to)]},
(5 -331)

where

al2 -- 0U1/0x 2, (5 - 332)

and f is a function of integration that depends on initial conditions. In order to evaluate f, it is assumed that the turbulence is isotropic

at t = to (but not at other times). This is a possible assumption because the effect of the velocity gradient on the turbulent quantities

becomes negligible as t ---) t o (see eq. (5-331)]. Thus, (,ij)0 is given by equation (3.4.12) in reference 4, where, as in equa-
tion (5-164), we set E0 = C(K:) = J0 _:4/3_. So
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((Pij) 0 = J0_ /K2_iij _KiKj).
12re z

(5 -- 333)

Inspection of equation (5-333) shows that rotations and reflections (in wave number space) of the vector K do not affect

(quij)o, provided the same rotations and reflections are given to the coordinate axes to which los referred. Thus, the field of turbulence

is isotropic, according to the usual definition ofisotropic turbulence (e.g., see ref. 4). Moreover, equation (5-333) satisfies continuity,

since )q(q)ij)0 = )cj(quij)0 (see equation (5-304)).1° Evaluation of f in equation (5-331) by substituting equation (5-333) at t = to gives

or

Then

f022 =

J0 K4/ 2+K2),

f[lCl,lC2+al2Kl(t_t0),r3]= J0 I" 2 +,2}2(K2+)%2).I=_T_2 llCl +[K2 + al2lCl(t- to)] 2

jo{K2 +[K2 +al2Kl(t-to)]2 +K2}2()c 2 +)c 2)

exp(-2v(t-to)lie 2 +3)c2a2(t-to) 2 + al2lCl)C2(t-- to)I}.
12n2g: 4

(5 - 334)

Similarly the component q}12, which is associated with the turbulent shear s_'ess, is

fOl2 =

1 2 2 2
J0{lc2+[)c2+al2lCl(t-t0)]2+)c2} 2 exp(_2v(t_to)[)c2+a121Cl)C2(t_to)+=_lcla12(t_to)]}

12n2_c 2

l tan-1× 1
(5 - 335)

where the function of integration was evaluated from equation (5-333), as in the case of equation (5-334). The same expression is

obtained for q_l; that is, 912 = q_l-

The contracted component q)ii, which is associated with the turbulent energy, is obtained from equation (5-324) as

q0ii =

× )c2 +[)c a + al2_q(t-t0)] 2 +)c_

J0{_l a +[_2 +al2)Cl(t-to)] 2 +)c_} 2 exp(_2v(t_ to)I_: 2 + a12)CllC2 (t_to)+lal2)Cl2(t_to)211
12_2_ 2

1 1 '
(5-336)

10Note, however, that (%)o is not an isotropic or numerical tensor according to the usual definition (see section 2.4.3), except for _ = 0. That definition would

require that the components of (_j)o have the same numerical values for arbitrary rotations of the coordinate axes, even when g does not rotate. Thus, a field of
isotropic turbulence is described by a nonisotropic tensor (eq. (5-333)), since the only second-order isotropic tensor (when defined in the usual way) is the

product of a scalar and 8ij (section 2.4.3).
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where the function of integration was again evaluated by using equation (5-334) and al2 is given by (5-332). Other components of

_j can be obtained in a similar manner. For example it is shown in reference 80 that q)lI is given by

J0{lc2 +[_:2 +al2gl(t-t0)] 2 +*:22}2

911 = 12x2

x l" KI

exp{_2v(t_to)[ic2+12 2 2 _-_gla12(t-to)+a12g11¢2(tto)l}

g22 f g2 +a,2K,(t- to) [It2 + a,2g,(t- to)]2 + _c2

g'_'-[_:i2 .... "_T2 {i¢2+[K2 + a,2Kl(t_to)]2+ g22}2
+[_c2 +a,2_q(t-t0) ] + _c22

X tan -1 g2 - tan -1 -I tab -I

2K2 K2

3

0¢12+g:22)_K2 (5-337)

tan -1 _:2 (_c2+a12K:l(t-to)] 2]+!c_)21 "

Note the similarities (and differences) among equations (5-334) to (5-337).
The quantities (P22,_012,qYti,and q)l Iare of interest in themselves; however, it is somewhat easier to interpret quantities that

have been averaged over all directions in g space, as was done in equations (5-325) to (5-327). In order to do this, we write

equations (5-334) to (5-337) in terms of spherical coordinates by setting gl = K cos tOsin 0, r,2= g in 9 .,in 0, _:3= K cos 0. Then
equation (5-325) becomes

ex P2x

¥iJ0¢) = J0 J0 tOij(_:'tO'o_': sine dto d0. (5 - 338)

Each of the terms in equations (5-326) and (5-327) can be obtained in a similar manner. For instance, from equations (5-324) and
(5-326),

x 27t ..• _l 2
Tij0c)=f fK: cosq_sm0_Z-_J 0c,%0)K: sinOd(pd0.

J0 J0 OK 2
(5 - 339)

1 "_" 1 l--

Discussion of computed spectra.Dimensionless spectraof _ u2 , _-ulu2, and _- uiu i for various values of dimensionless

velocity gradient are plotted in figures 5-54 to 5-56. When plotted in the form shown, the spectrum curve for zero velocity gradient
does not change with time, so that the various curves indicate how the velocity gradient influences the spectrum. The increase in

the heights of the spectra with (t - to) dUl/dX2 appears to be associated with the production of turbulence by the mean velocity

gradient. The spectra move toward the left as velocity gradient increases, since most of the production takes place in the low

wavenumber region (see. fig. 5-62). Actually the spectral equation corresponding to u_ does not contain a production term (see

eq. (5-324)). However, energy produced in the _ component can be fed into or out of _22by the pressure-force terms that transfer

energy between directional components. The magnitude of the effect of pressure forces is illustrated by the dot-dashed curve in
figure 5-54, where the pressure-force term in the spectral equation (fourth term in eq. (5-324)) isneglected. When the pressure-force

term is neglected, the portion of equation (5-334)in front of the exponential becomes J0(K:2 + K:2)/(12n 2), but th.e exponential

is unchanged. Comparison of the dot-dashed curve with the solid curve for the same velocity gradient shows the considerable effects
of pressure forces. That curve differs from the curve for zero velocity gradient because of the effect of the transfer term (third term
in eq. (5-324)).

The spectrum of u2 moves to the left much more rapidly than does that of uiu i , because of the action of pressure forces.

The pressure-force term 0.22 from the spectral equation (5-326) is plotted in figure 5-57. For all values of dimensionless velocity
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m f7_gradient, Q22 is negative at the higher wavenumbers..:_.This indi_..catesthat energy is transferred out of the spectrum 0 u2 at the higher

wavenumbers and into the sum of the spectra of u2 and u ] . Thus, the spectrum of u22 moves to the left faster with increasing

velocity gradient than does that of u--_., the latter representing the average of the three components of the energy. This means that

a typical eddy will be elongated in the transverse direction x2 by the action of the pressure forces. 11

The net areas under the curves of Q22 are positive for small velocity gradients and negative for large ones. Thus, the

pressure forces transfer energy into the u2 component at low velocity gradients, whereas at high velocity gradients they transfer

energy out of the u'_ component into the sum of the u2 and u 2 components. The resulting effect of this transfer on the components

) - _1_ were
is shown in figure 5-58, where u ._uiu i is plotted against dimensionless velocity gradient. The values of u22 and 1"_uiui

obtained by integrating under the spectrum curves in figures 5-54 and 5-56. For isotropic turbulence (zero velocity gradient in the
-_ 1_

present case), u2/I_uiui)has the value 1. As the velocity gradient increases, U2/('_UiUi I first increases very slightly and then

decreases considerably because of the transfer of energy between directional components by the pressure forces. The quantities

_'12/(u-'-_i / 3)and _-_/(u---i_i/3) are calculated in reference 80 and are plotted in figure 4 of that reference. The calculated ordering

2 2 2
of the three components of uiu i is u 1 > u3 > u 2 , in agreement with experiment (see, e.g., ref. 11 of chapter 4 and ref. 85 of this

chapter).

Also plotted in figure 5-58 is the ratio UlU -_UiU i , where UlU2 was obtained from the shear-stress spectra in

figure 5-55. As would be expected, the shear stress is zero for zero velocity gradient. In other respects the curve is similar to that

for U -_ UiUi , with the exception that it decreases more gradually as velocity gradient increases.

A quantity closely related to the shear stress is the eddy diffusivity e, defined by

ulu2 (5 - 340)

dU1/dx2

A plot of dimensionless eddy diffusivity against dimensionless velocity gradient is given in figure 5-58. Of some interest is the

observation that the eddy diffusivity does not go to zero for zero velocity gradient. In this respect the eddy diffusivity (or eddy

viscosity) is like the molecular viscosity. The result is reasonable, inasmuch as one would expect the turbulence to be diffusive even
in the absence of a velocity gradient. It is, however, in disagreement with the usual mixing length theories, which predict zero eddy

diffusivity for zero velocity gradient (see e.g., the relation for e given by eqs. (4-125) and (5-340)). This does not imply that the usual

mixing length theories are not useful for predicting mean velocity distributions in boundary layers, etc., inasmuch as the velocity

profile is insensitive to the value of eddy diffusivity in the region where dUl/dx2 is small. 12Figure 5-58 indicates that the value of
dimensionless eddy diffusivity does not vary more than +10% from a mean value, except at very high velocity gradients.

I.,oeal isotropy.The discussion in the preceding section concerning the transfer of energy between directional components

by pressure forces is pertinent to the theory of local isotropy (ref. 42). According to that theory the high wavenumber (small-scale)

components of the turbulence should be isotropic regardless of the directional orientation of the large-scale components. This

tendency to isotropy of the small eddies is generally ascribed to the action of pressure forces. However, the present calculations

indicate that in the presence of a mean velocity gradient the pressure forces can act to increase rather than decrease the anisotropy
of the turbulence (fig. 5-58). The effect of this orientation on the small-scale components is clearly shown in

llln contrast to the behavior of Q22, note that QIÂ is always negative and Q33 is always positive, regardless of wave number (see

ref. 80). Thus pressure forces transfer energy out of the spectrum of Ul2 and into the spectrum of _ at all wave numbers. Most of the directional

energy transfer at high velocity gradients is from Ul2 to u2 ; smaller transfer is effected by Q22. At smaller velocity gradients the energy transfers

in the three directions are of the same order (ref. 80).

12Moreover, according to equation (4-38), which is a more general mixing-length expression than that obtained from equations (4-125)

and (5-340), E does not necessarily go to zero for a velocity gradient of zero.
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figure 5-59, where V_/(½ Vii) is plotted against dimensionless wavenumber. For isotropic turbulence that ratio would be 1, but
the curves indicate that it is far from 1 in the high wavenumber region, especially for high velocity gradients. These findings

concerning the lack of local isotropy are in qualitative agreement with experimental results in reference 8 l, where turbulent spectra

were measured in a low-speed boundary layer.
It should be pointed out that the action of the pressure forces in working against isotropy in the present analysis is due to

the presence of the velocity gradient (eq. 5-326). Triple correlations, which are neglected here, can also affect the pressure forces

at high turbulence Reynolds numbers (see eq. (4-149)) and may tend to increase the isotropy. However, it appears that one should

be extremely cautious in assuming local isotropy in a boundary layer or pipe flow, inasmuch as high turbulence Reynolds numbers

in those cases generally correspond to high velocity gradients, except possibly at a large distance from the wall. Reference 82, where

the effects of anisotropy due to pressure forces were apparently not considered, indicates that local isotropy in a channel might

conceivably occur, but only at extremely high Reynolds numbers. Local isotropy may be a better assumption for the turbulent wake

of a cylinder (ref. 83).
Another quantity of interest in connection with local isotropy is the spectrum of the shear stress Ig12 (fig. 5-55.). For

local isotropy to exist, that quantity should go to zero faster with increasing wavenumber than does the average intensity component

ii. However, as pointed out in reference 81, that is a necessary condition for local isotropy, but not a sufficient condition.

Values of V]2/(_ Vii) are plotted against dimensionless wavenumberin figure 5-60. The curves indicate that this function,
in general, decreases with increasing wavenumber in agreement with the experimental findings of references 81, 84, and 85.

Energy transfer between wavenumbers. As discussed previously in connection with equation (5-327), the term

Tii dUl/dX2 makes no contribution to the change of total energy, but it can transfer energy between wavenumbers or eddies of various

sizes. Spectra of Ti for various values of dimensionless velocity gradient are plotted in figure 5-61. The curves are predominately

negative for small wavenumbers and positive for large ones, so that, in general, energy is transferred from small wavenumbers to

large ones. Thus, the effect here is similar to that of the transfer term due to triple correlations. The transfer apparently affects the

shape of the spectra in figures 5-54 to 5-56 by exciting the higher wavenumber regions of those spectra, as in the case of the transfer

due to triple correlations (see, e.g., section 5.3.2.2). "Illis is shown by the dashed curves for zero velocity gradient normalized to the

peaks of the curves for (t - to) dU]/dx2 = 20 in figures 5-54 to 5-56.

A natural explanation of the transfer of energy to the high wavenumber regions by the mean velocity gradient would be

that the velocity gradient stretches the vortex lines associated with the turbulence. Some related problems in this connection are

considered in reference 86. This picture might also explain the small amount of reverse transfer shown in figure 5-61 for low wave-

numbers at small velocity gradients, since the velocity gradient should be able to compress, as well as stretch, the vortex lines if

they are properly oriented. This reverse transfer was found to be more pronounced in the transfer term associated with u_ (not

shown).

Production, energy-containing, and dissipation regions. Production, energy, and dissipation spectra, normalized

to the same ordinate for comparison, are plotted in figure 5-62. The production and dissipation spectra correspond to the production

and dissipation terms in equation (5-327). Curves are shown for a negligibly small and for a comparatively large dimensionless

velocity gradient. For the small velocity gradient the production, energy-containing, and dissipation regions are only slightly

separated; whereas at the higher velocity gradient they are more widely separated. The turbulent production by the mean

velocity gradient occurs mostly in the low wavenumber or large eddy region; the dissipation occurs in the higher wavenumber

region. Although the three regions separate as velocity gradient increases, there is still considerable overlap at a value of
(t- to) dU ]/dx2 of 50. Energy from the mean velocity gradient feeds into the turbulence over a considerable range of wavenumbers.

The energy goes into the turbulence through the u2 component, inasmuch as the production terms are absent from the spectral

equations for u2 and u 2 (see eq. (5-324)). However, the energy can be transferred between the various directional components

by the pressure forces as discussed previously.

The separation of the energy-containing and dissipation regions at high velocity gradients is similar to the separation of

those regions at high turbulenceReynolds numbers without a velocity gradient (section 5.3.2.2). In both cases the separation appears

to be a consequence of the change in shape of the energy spectrum produced by the transfer of energy to high wavenumbers

(figs. 5-54 to 5-56).

A summary of turbulent energy processes.The sequence of turbulent energy processes in a flow with strong shear and/

or weak turbulence might be summarized as follows. The turbulent energy is produced by the mean velocity gradient. This

production occurs in the u_ c_mp_nent_ftheenergyandpred_minate_yinthe_argeeddyregi_n.Thepressuref_rces_whichdepend

here on the velocity gradient, transfer the energy between various directional components. In doing this, they may increase the

anisotropy of the turbulence, and, in particular, they oppose local isotropy in the high wavenumber region. In cases where the effect

of the triple correlations on the pressure forces is not small, the turbulence might be somewhat more locally isotropic. The mean
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velocity gradient, like the triple correlations, transfers energy from the large eddies to the small ones. This transfer can be interpreted
as a stretching of the vortex lines by the mean velocity gradient. Finally, the energy is dissipated by viscous action in the small-eddy

region.

Decay of the total turbulent energy. A dimensionless plot of the decay of turbulent energy for various velocity gradients

is presented in figure 5-63. As velocity gradient increases, the rate of decrease of the turbulent energy with time decreases because

of energy fed into the turbulent field by the mean velocity gradient. Although the changes produced by the velocity gradient are

considerable (note that the vertical scale is logarithmic), the turbulence at all times decays.
The curves in figure (5-63) are plotted with three dimensionless groups in order to show the effects of time and mean

velocity gradient separately. The curves are, however, similar and can be compressed into one by using the proper similarity

parameters. The result is shown in figure 5-64, where vS/2(t - t0)5/2 u--i_i / J0 is plotted against (t - to) dU1/dx2.

The ultimate decay of turbulent energy in all parts of wavenumber space can be seen from the structure of

equation (5-336). At large times the argument of the exponential in that equation is negative for all values of gi and al2.
Further understanding of the dynamics of shear-flow turbulence can be obtained by studying the random vorticity in

sheared turbulence. One aspect of the interaction of turbulent vorticity with a mean shear will be considered in the next section.
Direction of maximum turbulent vorticity in a shear flow.The vorticity in a turbulent shear flow has been mentioned

briefly in connection with the energy transfer between wavenumbers. Here we further discuss turbulent vorticity--in particular, the

alignment of vorticity by a mean velocity gradient and the direction of maximum vorticity. 13

Intuitively, one might expect the random vortices to tend to become aligned in the direction of maximum mean strain rate;

that is, at 45 ° to the flow direction. Taylor (ref. 88) was evidently the first one to emphasize the stretching of turbulent vortex
filaments as a mechanism for the production of turbulence. Theodorsen, (ref. 89) using a possibly overmechanized model, has

attributed the maintenance of turbulence in a shear flow to the stretching of "horseshoe vortices" that are inclined to the direction

of mean flow at an average angle of 45 °. Weske and Plantholt (ref. 90) have discussed that concept further and have been able to

generate such vortices artificially in a pipe flow.
Although it seems reasonable that the maximum turbulent vorticity should occur at 45 ° to the flow direction, further

analysis (given below) indicates that it could occur at that angle only if the transverse component of vorticity equals the longitudinal

component; that, of course, is not the case in an anisotropic shear flow. However, there may be a range of velocity gradients where
the maximum vorticity could occur at angles reasonably close to 45 °.

Since the turbulent vorticity _ is a second-order tensor, its components relative to a rotated coordinate system are given

by (see eq. (2-12))

(0_ = bikbjtC0kt.0t, (5 - 341)

where (oi is an instantaneous vorticity component, and the overbars indicate averaged values. Unstarred quantities give components

relative to coordinates xi, and starred quantities are relative to coordinates x _.14 The quantity bik is the cosine of the angle between

x_ and Xk. The summation convention is operative in equation (5-341). If we consider a counterclockwise rotation about x3 so

that x_ makes an angle o_with Xl, equation (5-341) reduces to (by setting i =j = 1)

cO1-''g= 103-7(1+ cos2Ot) _ 1+ m lm2 sin 2_ + _ mz (1 - cos 2o 0.
(5 - 342)

.----_ *2
The component co2 is then obtained by substituting o_+ 90 ° for ct in equation (5-342). The angle for which coI is a maximum

is obtained from equation (5-342) by setting O_-_/_a = 0. This gives

1 tan_l 2(01(o 2 (5- 343)

]3The direction of maximum turbulent stress or intensity is, of course, also of interest (see, e.g., ref. 87), but the discussion here will be confined to vorticity.

l_l'he use of stars here on rotated coordinates and on quantities measured relative to rotated coordinates is consistent with the usage in chapter 2. But note that

stars are sometimes also used to designate dimensionless quantities and complex conjugates.
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Equation(5-343) shows (as mentioned above) that for a finite o_1¢0-"2",c%,_ can be equal to 45 ° only for c0_ = ¢o_, or for isotropic

turbulence. (A similar result is obtained for velocity fluctuations by replacing the co's in equations (5-341) to (5-343) by u's, since

both O_i0) j and uiu j are second-order tensors.)

In order to calculate the angle a¢o_, _ from equation (5-343), components of _io_j intheunrotatedcoordinatesystemmust

be known. To that end, the two-point tensor o)i(o i (r) can be related to uiu i (r) by writing equation (2-24) at points P and P'. Then

aura a2UmU 
c°i¢°J = I_itmEJpq t}x¢ _x_ -£itm£Jpq Ort_r p

(5-344)

where the relations 8/Ox_ = 8/_r i and 3/Ox i = _/3r i were used and r is the vector extending from point P to point P'. Then

defining the spectral tensor of o_i£o i by

and using

we get

But

_iO)j (r) = _. _'2ij(_)e i_'rdK,

uiu-_(r) = _ tPij (lc)e iK'rdK,

_ij = EitmEjpql_/ICp_Omq •

eiemEjp q = 8ijSepSmq + _ip_£q_mj + _iq_tj_mp - _ijStq_mp - _ip_tj_rnq - _iq_tpSmj,

(5 - 345)

(5-304)

(5- 346)

(5 - 347)

as can be seen by substituting numerical values for the subscripts and using equations (2-23) or (2-23a) and (2-3). Then

equation (5-346) becomes

['_ij ----(_ij 1(2 -- K:il£j)_0tg -- l(2tPji ' (5 - 348)

"""7
which is the same as equation (3.2.3) of reference 4. Finally, O_iO) j (0) -- (0i0) j is obtained from equation (5-345).

Figure 5-65 shows the variation of ao_, with dimensionless velocity gradient. The quantity t in the dimensionless

velocity gradient is the time of decay, and to is an initial time when the turbulence is isotropic. U1 is the mean velocity, and x2 is

a transverse coordinate. As expected from the form of equation (5-343), the angle for which the turbulent vorticity is a maximum
is 45 ° only when the dimensionless velocity gradient is zero (isotropic turbulence). However, it remains at values slightly greater

than 45 ° (between 48 ° and 53 °) for a considerable range of dimensionless velocity gradients. It is of interest that the experimental

vortices of reference 90 appeared to be inclined to the mean flow at similar angles.

Figure 5-66 shows the degree of alignment of the turbulent vortices in the direction of maximum vorticity. For no alignment

ofthe vortices, the ratiotO2max/¢O_-----: is, ofcourse, one. Ontheother hand, ifthe vortices were all alignedat the angle atom, the

Y--- 2
ratio ¢arnax O/-_ n would be infinite. The figure shows that the ratio actually varies between 1 and about 12 for values of

dimensionless velocity gradient shown. The decrease in degree of vortex alignment as dimensionless velocity gradient increases

beyond 3 may be an effect of pressure fluctuations.
An effect of initial condition. For the results given in section 5.4.2.1 thus far, the turbulent energy always decayed with

time (see fig. 63). Although energy was fed into the turbulence by the mean velocity gradient, so that the turbulence decayed at a
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slowerratethanit wouldhavewithnoshear,theturbulentenergyproducedbytheshearwaslessthanthatdissipatedbyviscous
action.Fortheinitialconditiononthespectrumof theturbulenceit wasassumedthatequation(5-333)holdsat t = to.
Equation(5-333)isforaninitiallyisotropicturbulenceandgivesinfiniteinitialtotalturbulentenergy(perunitmass),althoughthe
energyatanyfinitewavenumberisfinite.(Atanytimegreaterthantothetotal turbulent energy is also finite.)

Recently, Hasen (ref. 91) used an expression for ((I)ij)0 equivalent to that in equation (5-333) multiplied by a negative

exponential in _. In that case the total initial energy was finite. Her results, which were limited to two-dimensional initial

disturbances, showed that the turbulent energy can increase for a finite range of times. It is of interest to determine whether the same
effect occurs for an initial three-dimensional isotropic turbulence (ref. 92). In order to do that we modify equation (5-333) to give

((Pij) 0 : J0_/_i:K2 _)ci_:j)e -)c2/)c_ (5- 349)12it z _ J

where l/r,0 can be considered as an initial scale for the turbulence.

The equations for (Pij given thus far in section 5.4.2.1 were derived for the initial condition given in equation (5- 333 ). Those

equations (eqs. (5-334) to (5-337)) can be modified so that the initial condition for (Pij is given by equation (5-349) by multiplying

their right sides by the exponential

m

Integration of(Pij over all wavenumber space then gives the turbulent energy tensor uiu j , where u i and uj are velocity components

and the overbar indicates an averaged value.

Figure (5-67) shows a dimensionless plot of turbulent energy against time for various values of a Reynolds number R. The

quantity 2Uiuil_ = Ul2 + U22+ U is the turbulent energy, and (u-_-)0is the value of uiu i at the initial time to. The Reynolds

number is based on mean velocity gradient dUt/dx2 and initial turbulence scale l/r,o. The quantity U1 is the mean velocity, x2 is

distance in the direction of the mean velocity gradient, and v is the kinematic viscosity. The curves for the plot were obtained by

using the modified equation (5-336) and equation (5-304) (with r = 0 ).
For small values of R the energy decreases monotonically with time, as in figure 5-63 where equation (5-333) rather than

equation (5-349) was used for the initial condition. (Note that eq. (5-333) is obtained from eq. (5-349) by letting R = 0, or r,0 = _.)

For larger values of R, however, the energy increases during finite time intervals. Thus, for the larger Reynolds numbers there are

time regions for which the energy fed into the turbulent field by the mean shear exceeds that dissipated by viscous action. For large

times the energy again decays, and it appears that a steady state turbulence is not attained.

The ultimate decay of turbulent energy in all parts of wavenumber space, according to the analysis in the present section,
can be seen from the structure of equation (5-336) and of the above exponential (by which equation (5-336) is multiplied here). At

large times the argument of the exponential in equation (5-336), as well as that in the above exponential, is negative for all values

ofr4 and dUl/dX2.

Some comments on the maintenance of turbulence. Since the turbulent energy can increase for finite time intervals, one

might ask what happens physically at large times to cause the energy to again_decrease. In order to answer that question, we look

at the u-_ component of the energy. Figure 5-68 shows a dimensionless plot of u_2 , the component of turbulent energy in the direction

of mean velocity gradient. It is seen that regardless of the value of R, there are no time regions during which u_ increases, and for

large times u_ becomes a small fraction of the total energy. This is evidently because there is no turbulence production term in the

spectral equation for u 2 ;2 so that the only way energy can be fed into the u_ component is by means of the pressure-velocity

correlation terms, which can transfer energy between directional components. However, as shown in figure 5-57, the pressure-

velocity terms tend to extract energy from the u2 component, rather than to deposit it there (except at small velocity gradients or

times). Thus, the reason that all of the components of the turbulence decay for large times is evidently that the energy is drained

out of the u2 component of the velocity with the result that the turbulent shear UlU 2 goes tO zero. There is then no mechanism for

maintaining the turbulence, since the turbulent energy is produced by the work done on the Reynolds stress ulu 2 by the velocity

gradient.
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Ontheother hand, consider a somewhat stronger turbulence or small mean shear, where the triple-correlation terms in the

equations for the pressure-velocity correlations are not negligible. Equation (5-301) becomes (neglecting buoyancy),

p &_r t 0x 2 0r_ 0rt0r_:
(5-350)

where unprimed and primed quantities refer, respectively, to values at points P and P' separated by the vector r, o is the pressure,

and p is the density. A repeated subscript in a term indicates a summation. In this case it seems likely that the pressure-force terms

will transfer energy into the u22 components, since their probable effect, when triple correlations are present, is to make the

turbulence more isotropic (ref. 4, p. 88). The result may be that a nondecaying solution can be obtained with a uniform velocity

gradient in a homogeneous turbulence, as seemed to be the case in the experiments of Rose (ref. 93). This in no way conflicts with

the results of section 4.3.4, since there, inhomogeneities in the turbulence may have an additional sustaining effect on the turbulent

energy.

Thus, if the above speculation concerning the directional transfer of energy is correct, it may be that the triple correlations
play a crucial, although indirect, role in maintaining the turbulence by transferring energy between directional components through

the pressure-velocity correlations. This effect of the triple correlations may be more important in turbulent shear flow than the

transfer of energy between wavenumbers by those correlations. The latter seems to be simulated reasonably well by the energy

transfer between wavenumbers which is produced by the mean velocity gradient (fig. 5-61). We shall return to the problem of the

maintenance (or growth) of shear-flow turbulence in later sections. First, however, we want to get an idea as to whether predictions

from our linearized theory are realistic.

5.4.2.2 A comparison of theory with experiment for uniformly sheared turbulence.--Approximately uniformly sheared

turbulence has been investigated experimentally in references 93 to 95. Comparison of those results with the somewhat idealized
theory of section 5.4.2.1 indicates that the latter shows qualitative features which are very much like those observed.

In order to obtain a quantitative comparison between theory and experiment, more realistic initial conditions than those

given by equation (5-333) or (5-349) should be used. Initially isotropic turbulence was assumed in the theory, whereas the initial

turbulence in the experiments was not isotropic. Also, the shape of the assumed initial energy spectrum is probably not realistic.

In the present section we use an initial anisotropic spectral tensor which appears to be general enough to represent the initial

experimental turbulence realistically. The theoretical results for the evolution of the turbulence are compared with those obtained

experimentally to see whether a reasonable quantitative correspondence exists.
-----7

The evolution of the spectrum tensor corresponding to uiu j (r) is given by equation (5-324):

KIKi ±,_ KIKj .^ "_dU I_iJ_t : --(_i'_2j + _;lq0i2j ,/dU'dx2 + KI _q0ij_K2dU,dx2 + 2 7_02j-r_. 7_i2)d-_2- 2VK2(pij.
(5 - 324)

where the spectrum tensor qhj is defined by

uiu---_(r)= I2 qOiJ(l¢)eiz'rdIG (5 - 304)

and _ is the wavenumber vector. The quantity_ij is the spectral component of uiuj at _ In order to interpret the terms in equation

(5-324), we first multiply the equation through by d_; Then, the first term on the right side gives the rate of production of qhj in d_:

by work done on qhj by the mean velocity gradient. The second term gives the net rate of transfer ofqhj into d_ from other wavenumber

regions by 0Ul/0X2. When this term is integrated over all _ the result is zero. The third term gives the rate of transfer ofqhj between
its directional components by pressure forces associated with 0UitSx2. This term drops out for i =j. Finally, the last term gives the

rate of dissipation of qhj in d_.
In section 5.4.2.1 it is assumed that the initial turbulence is isotropic and is given by equation (5-333) or (5-349). The former

equation is a special case of the latter, which is

(¢#iJ)o= Jo {8..r2 _-tz_: 21292 _ ij -x:iKj}e ,

Jo and _ are constants of the initial conditions, and the subscript 0 designates values at the initial time.

(5-351)
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However,equation(5-349)isnotgeneralenoughtorepresenttheinitialexperimentalturbulenceinreferences93to95.
Thatturbulenceisanisotropicandmayhaveaspectrumwhoseshapeisnotgivenbyequation(5-349).Anexpressionfor(gij)0which
maybesufficientlygeneraltorepresenttheinitialexperimentalturbulenceis

-- Ctm K2 (_ " KjK m
(9iJ)0---4--_--_ _ i¢-_-)(_jm K2 )exp[--(K_(tm))n(trn)] '

(5 - 352)

where, for 911,922, 933, and 912 (the only components of 9ij of interest here),

5

3 n(fm)£°(/m! [10(UtUm)^ __,mCUkUk)0] '
Ctm = 14 F(5/n(tm)) I " ,u

(5- 353)

and where the £tm and n,m are constants of the initial conditions, and r is the gamma function. Parentheses are placed on some

of the subscripts to indicate that there is no sum on those subscripts. Equations (5-352) and (5-353) are consistent with

equation (5-304) for r = 0. As an aid to obtaining the initial constants *tin, they can be related to the initial derivatives (_)UiUj / _t) 0

by substituting equations (5-352) and (5-353) in (5-324), multiplying (5-324) by d_ integrating, and using equation (5-304)

(with r = 0). This gives

where

elm= F(5/ntm) lOIlm - 8tmlkk ) '

1 (_u_j 1

Iij = -_V _,--_)0 - Bijkt

(UkUl) 0 dU 1

v dx 2

(5-354)

(5-355)

and where the nonzero components of Bijt are B 1112= 23/49, B 2212 = 16/49, B 3312 = 10/49, B 1211= 29/490, B 1222= 68/490, and

B1233 =-1/490.

The values of the remaining constants of the initial conditions, the ntm, depend on the shapes of the initial spectra. Since

the initial spectra were not measured in the experiments, we determined the ntm from the evolution of the UiU j . For the data of

references 93 to 95, values for the nonzero nero were obtained as nil = 3/4, n22 = 1/2, n33 = 3/4, and n12 = 4.

Equation (5-324) is solved in section 5.4.2.1 for the special initial condition given by equation (5-351 ). For general initial

conditions we obtain, for 9n, 922, 933 and 912,

where

9ij =Hij exp[-2v_c2(t-to)(1 +a;2(xll¢2/_¢2)+3a;21¢!2/_¢2)] '

* (dU )(t-to)a12 = 1 ! dx2 ,

(5 - 356)

(5 - 357)

H22 = (922)0 D2, (5- 358)

H12 = D[(_12) 0 +(¢P22)0R] , (5 -359)

Hll =(911) 0 + 2(912)0 R + (922)0 R2, (5 - 360)
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.i,--t,ii>0+

H33 = Hii -Hi1 -H22,

D = 1+ 2a_2KiK 2/K 2 " *2 2+al2K l /K 2,

R= E 2KI/KF,
_:1/r D

(5- 361)

(5 - 362)

(5 - 363)

(5-364)

[=½I (D2-1_KI +! K K1/K J1- _
(5 - 365)

and

• 2 2 1/2

D tan_ifal2(Kl/_,)(l--K2/K) ),

D
(5-367)

The quantity (_0ij)0 is the value of_j at the initial time to. In the present study it is obtained from equation (5-352). The correlations
""-7

UiU j and UiU j are calculated from equation (5-304).

Plots for the evolution of components of tliU j are shown in figure 5-69. Those evolutions were used to determine the

constants in the initial-condition equation (5-352). Values of t for the experiments were calculated as the longitudinal distance

divided by the centerline velocity. The agreement of the calculated curves with experiment indicates that the initial condition given

by equation (5-352) is evidently general enough for our purposes. Note that the total strain in the experiments of reference 95 is

appreciably greater than that in the other experiments. The results near the end of the curve for _2221t2in figure 5-69(c) indicate that

those results may be partially outside the range of applicability of the analysis, although the accuracy of the experimental results

in that region is uncertain.
Once the initial conditions have been determined from equation (5-352) and figure 5-69, one can make a comparison of

theory with experiment for several turbulence quantities (figs. 5-70 to 5-72). Evolutions of turbulence macroseales I-4 and Taylor

microscales _i are plotted in figure 5-70. The scales are defined in the usual way as

and

L i = I; u--_(ri,O, O)dri / U--_" (5- 368)

2U12 (5-369)

_2= (°_2u==_/bJri2)r =0 "

In figure 5-70 both theory and experiment indicate that the microscale _,1 increases with time. Similar results were obtained

for the other scales. The experimental scale ratios L2/L1 and k2/2,1 are close to the values for isotropic turbulence (1/2 and 1/f12").

The theoretical values of L2/Lt and ),,2/'L1are close to the isotropic values at early times and tend to be, respectively, somewhat higher
and lower than those values at later times.

This growth of the turbulence scales with time appears to be a characteristic of unbounded fields of turbulence with or

without mean velocity gradients. An exception occurs at short times, when the spectral transfer of energy to larger wavenumbers

80



causes a decrease of scale (fig. 5-50). The growth of scales, which eventually wins out, is mainly due to the selective annihilation

of eddies by viscous action, the smaller eddies being the first to go because of the larger shear stresses between them. If all eddy

sizes are present at some time, as they are in equation (5-352), growth will continue indefinitely, so that a steady-state situation for
uniform shear flow in which all turbulence quantities are constant with time appears unlikely.

Even if there is an upper limit on the initial eddy size, say the grid spacing, larger eddies may be generated by inertial

transfer. Figure 5-73 shows that for the range of values of (t- t0)dU l/dx2 of interest here (from 0 to about 2) there is considerable

reverse energy transfer to lower wavenumbers (larger eddies) produced by the shear. This is indicated by the positive areas at low

wavenumbers in figure 5-73 and may be a reason the experiment in reference 93 sometimes shows scales larger than the turbulence-

generator spacing at large distances downstream. Of course, eventually the scale size will be limited by the size of the test section,
but when that occurs, the turbulence will no longer be nearly homogeneous.

Two-point correlations. Of particular interest are the two-point velocity correlations in figures 5-71 and 5-72. They

indicate that the negative region observed experimentally in the ulu'--_(0, 0,r 3) correlation, and the absence of such a region in the

other correlations, are predicted by the theory. In isotropic turbulence negative values occur, of course, in both the UlU _(0, r2, 0)
-----7

and UlU i (0, 0,r 3) correlations as a result of the continuity equation (ref. 4). The confinement of such regions to the ulu I (0, 0,r 3)

correlations in figures 5-71 and 5-72 seems to be associated with the turbulent shear flow. This was observed both in the experiments

of Champagne et al. (ref. 94) and of Rose (ref. 93). The successful prediction of the two-point velocity correlations, particularly the

correct negative and positive regions is somewhat of a triumph of the linearized theory. This, of course, does not mean that the

turbulence is linear, but only that the nonlinear effects seem to be overshadowed in the present cases.

Comparison of the curves for ulu_ (0, r 2, 0) in figures 5-71 and 5-72 indicates that the shape is nearly the same for the two

times shown. Similarly, figure 5-74 shows that the shape of the UlUi (r 1,0, 0) curve is nearly preserved over a considerable time

span. Thus, although the turbulence scales grow with time, the distribution of eddy sizes seems to remain similar as the scales grow.
This is somewhat like the final period of decay without shear, where the correlations and spectra remain similar as the turbulence

decays and the scales grow (ref. 4, p. 96).
In view of the complexity of the over-all turbulence process, with contributions to the change in turbulence components

being produced by turbulence production, by transfer between wavenumbers and directional components, and by dissipation

(eq. 5-324), it seems remarkable that the combined effect is to change the turbulence in such a way that the eddy-size distribution

remains nearly similar. Of course, one could not expect that this similarity would be preserved indefinitely. The spectra in
reference 7 show that for large (t- to)dU l/dX2 the shapes of the spectra change. However, for the values of (t - t0dU t/dx2 in the

experiments considered here, while the effects of the shear were great enough to produce a large influence on the turbulence levels
(in the absence of shear all components of the turbulence would decrease monotonically.in fig. 5-69), they were not large enough

to alter the shapes of the correlation curves appreciably.
Although the results indicate that in most cases a good correspondence exists between theory and experiment, a higher-

order theory which retains turbulence self-interaction terms in the equations might give some improvement. However, the small

inhomogeneities which, to some extent occur in all of the experiments may have as important an effect as the self-interaction.

5.4.2.3 Heat transfer and temperature fluctuations in a uniformly sheared turbulence.--Turbulent heat transfer and flow

in passages and boundary layers are usually analyzed by using a phenomenological approach. That is, assumptions are introduced

into the analysis to relate the turbulent shear stress and turbulent heat transfer to the mean flow. Examples of these analyses are given

e.g., in sections 4.3.2.6 to 4.3.2.13 and in references 96 to 105. This approach is very useful and makes it possible to generalize large

quantities of experimental data. In fact, it appears to be the only feasible way, at present, of analyzing the complex high Reynolds-

number flows occurring in boundary layers and passages.
Although the phenomenological analyses are very useful, we can obtain a great deal more insight into the turbulent

processes by using a statistical approach based on the equations of motion and energy. This of course, is the approach generally
followed in this chapter. These studies should help to put the phenomenological analyses on a sounder basis. Because of the

complexity of turbulence it is necessary to limit one's self at least at the beginning, to simple models, when studying it from a
fundamental standpoint. Thus, Corrsin (ref. 106) and Dunn and Reid (ref. 107) studied heat transfer in isotropic turbulence with a

uniform mean temperature gradient. (The term "isotropic," as usual indicates that the statistical properties of the turbulence are

independent of direction.)
Here we extend the analysis of section 5.4.2.1 to include uniform heat transfer and temperature fluctuations (ref. 108). The

mean temperature gradient, as well as the shear, is uniform. Locally, the heat transfer and flow in this case are somewhat similar

to those in passages and boundary layers if the scales of the turbulence in the flows are reasonably small compared with the scales

of the inhomeneities.

The fluid properties are assumed constant, so that the turbulent velocity field is independent of the temperature field. Thus
the results for turbulence with a uniform velocity gradient from section 5.4.2.1 can be used for obtaining the turbulent heat transfer

and temperature fluctuations. It was shown in section 5.4.2.1 that a homogeneous turbulent field with a uniform velocity gradient

81



decays with time. Although energy is fed into the turbulence from the mean velocity gradient, the production of turbulence is never

great enough to offset the dissipation. The fluctuating temperature field and the turbulent heat transfer will also change with time.

Because of the decay of the turbulence with time it will be necessary to produce it initially by some means, for instance,

by passing a stream through a grid. Then various distances downstream from the grid will correspond to various times of decay.

Approximately uniform transverse velocity and temperature gradients in the stream could be produced by passing the flow through

parallel channels before passing it through the grid. The temperature and velocity of the fluid in each channel would be adjusted

to produce the desired velocity and temperature gradients across the stream emerging from the channels. Because of the higher

velocities through some parts of the grid it might be necessary to vary the thickness of the wires in the grid to produce an
approximately homogeneous turbulence. Heating of the grid would not be necessary because, as will be seen, temperature

fluctuations can arise from the interaction of the turbulence and the mean temperature gradient.

As in section 5.4.2.1 the mean gradients are assumed to be large enough, or the turbulence weak enough, for the triple-

correlation terms occurring in the analysis to be neglected or at least for those terms to be small enough compared with other terms

to give a sensible solution. Thus equations (5-313) to (5-320), with gi = 0 (buoyancy neglected), apply here. As in section 5.4.2.1

the mean velocity is in the x I-direction, and the mean-velocity gradient is in the x2-direction. The mean-temperature gradient is also

taken to be in the x2-direction. Then equations (5-313) to (5-320) become

0 _ dU 1 _ dU l

_" (Pij + Oil(P2j "_2 + 0jl(Pi2 _ -- K!

_(Pij dU 1

0_: 2 dx 2 =-p(-iKi_.j + iKj_)- 2vK2q)ij,
(5-370)

05 dU l 08 dT ,
._--= +-r--tY2 + r_) = -2_
oK2 ox 2

(5- 371)

_j dU ! ¢)'Yj dT dUI = - P i)¢j_' - (_ + v)l_27jOt dx 2 1(I _---'_2+q_2J d_2 +i_lj_/2 dx-"-_
(5-372)

_/_ dUl ]_l _ + " ' dUl dT 1 ig:i_ _ ((x + v)g:2y_. (5 - 373)
0t dx 2 _ Oi1Y2d_2+_Oi2d_2 =p

P KtKj dU !- i)cj_._ =2--_--q)i2 dx 2 , (5-374)

and

)¢1):i dU I
pi_:ik j = 2--_--92 j d-'_2,

pi_:i_=_ KIKi , dUlZTY2 dx 2 '

(5-- 375)

(5 - 376)

-pigj_" = 2--_-- y2KII(j dUldx2 (5-377)

Substituting equations (5-376) and (5-377) into the right-hand sides of equation (5-373) and (5-372), letting i =j = 2, and comparing

the resulting equations shows that y2 = Y[ for all times if they are equal at an initial time. Here it will be assumed that the temperature

fluctuations are initially zero, so that the above relation will hold. If

dUl - a12 (5- 378)
dx 2
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and

d_.._T= b2 (5 - 379)
dx 2

we finally obtain

_2 0_22 _" 1(1K2 (1 ]
(5-380)

and

28 28
a121(1 _ = -2b2Y 2 - 2aK28, (5 - 381)

Ot o1%

where the Prandtl number Pr = viol.

In order to obtain solutions of equations (5-380) and (5-381 ) it will be assumed, as in section 5.4.2.1, that the turbulence

is initially isotropic, so that we can use equation (5-333) for the initial _j. The turbulence is not, of course, isotropic at later times.

Note that t_ij, according to equations (5-370) and (5-333), is not a function of temperature (those equations do not contain

T, 8, 4, or ),_). Thus the solution already obtained in section 5.4.2.1 can be used to obtain tP22 in equation (5-380):

Jo{l_ +[1(2 + a121(l(t-to)] 2 +1(2}2(1( 2 +I_ 2)

_22 = 12/C21(4
+- 1(la(t-t0)+a121(11(2(t-to)I}.

(5-334)

where J0 and to are constants that depend on initial conditions. For a Prandtl number Pr of 1 the solution of (5-380) is

1 2 2 2 J0{1(12 + [1(2 + al2(t-to)] 2 + 1(32}2(1(_ + 1(32f ,2

12x2a12K1

(5-382)

1(2

x b2 tan-1 (_:2 +_:2) I/2 +'f[ KI'K2 +al2_h(t-t0)'1(3]

where J is a function of integration. The method of solution is given in reference 79. In order to evaluate f, it is assumed that the

temperature fluctuations are zero for t = to. Thus substituting "/2= 0 for t = to in equation (5-382),

b 2 tan -1
12/t2a121(l

1(2 (5 - 383)

or

f[+¢1_2 + al2_t(t- to),_3] =

Jo{1(l2 +[1(2 + al2_l(t-t0)] 2 + K32}2(_2 +1(32)1'2

1292a12Kl

b2 tan-I K2 +a121(l(t- to)

(5 - 384)
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Substitution of equation (5-384) in (5-382) gives, for the Fourier transform of xu_ for a Prandtl number of 1,

Y2 =

2 2 2 2
Jo{_:2 +[I¢2+a121¢l(t-to)]2+t¢3} (1¢1 +1¢3) 1/2

121t2a12K! K2
1 a 2 K2[.

b2 exp{-2v(t-to)[ lc2 +al21cllc2(t-t0)+_ 121 ,_-t0)2]}

(5 - 385)

X[ K2 K2 +az2K'(t- t°)ltan-1(ic2+K_)l/2-tan-! i_212+_-_2 J

For Pr _ 1, the solution for Y2 can be written as

_/2 = b2J0(K2+K2) {K2 + [K2 + al2Kl(t-to)]2 + K2t2 expI[(1/Pr)-1]vK2 (Ki2 +-_ +K2)
al2Kl K2127t 2 L a12K1

-2V(t- to)Jig2 + al21Cllc2(t-to)+ la22K2 (t-tO)211f_;+at2"1('-'°),_K2 +_2+K321

(5 - 385a)

The expression for the Fourier transform of xx-''7 for a Prandtl number of 1 is obtained by solution of equation (5-381):

J0{KI2 + [K2 + al2Kl(t- t0)]2 + K32}2b 2

12x2a221¢ 2 exp(-2v(t- t0)II¢2+ a121¢llC2(t- to)+ 3a221¢2(t- to)2]l

tan-1 K2

(5 - 386)

where 8 was set equal to zero for t = to.
The spectral quantities Y2 and 8 are functions of the components of the wavevector _ as well as of its magnitude. It is

somewhat easier to interpret quantifies that are functions only of the magnitude _ We can obtain such quantifies in the usual way

by integrating )'2 and 8 over all directions in wavenumber space. Thus, define a quantity F2 by the equation

(5- 387)

where A is the area of the surface of a sphere of radius K. Then, since
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= _o r2d_: (5-388)

(letr= 0 inequation(5-309)),I"2 dKgivesthecontributionfrom wavenumber band dK to"t'u2 .Thus aplotoft2 againstKshows

how contributionsto"na--_aredistributedamong thevariouswavenumbers oreddy sizes.

Equations (5-385) and (5-386) can be written in terms of spherical coordinates by setting

_:l = _:cosq_sinO, K 2 = _:sin g sin 0,

K 3 = KcosO. (5-389)

Then equation (5-387) becomes

n 2x

F2(K)= _0 _0 T2(K,IP,0)K2sin0 d_Pd0.
(5-390)

A similar equation for 5 integrated over all directions in wavenumber space is

e= e2=

A(K): J0 J0 _(i¢'q_'O)_:z sin0 dcp d0.
(5 - 391)

Letting r = 0 in equation (5-31 I)

_" = So A dK (5 - 392)

so that, as in the case of 1"2, A dr,gives contributions from the wavenumber band dKto x 2 .

m

Computed spectra. Spectra of xu-"_ and ,_2 for various values of dimensionless velocity gradient are plotted in

figures 5-75 and 5-76. The integrations in equations (5-390), (5-391), (5-385), and (5-385a) were carried out numerically.
When plotted using the similarity variables shown, the curves for zero velocity gradient do not change with time, so that

comparison of the various curves indicates how the velocity gradient will__alter the spectrum. Thus the curves in figures 5-75 and

5-76 that lie above those for a12 = 0 indicate that for those cases '_12 or x 2 at a particular time is greater than it would be for no

velocity gradient. The turbulence itself is, of course, decaying with time. Figure 5-75 shows the effect of Prandtl number on the

spectrum of xu--'2. As Prandtl number increases, the peaks of the spectra move toward the higher wavenumber region, the change

being greater at the lower values of a_2. High wavenumbers correspond to small eddies, inasmuch as the wavenumber represents

the reciprocal of an eddy size (or wave length).
For zero velocity gradient the results are the same as those obtained by Dunn and Reid (ref. 107). As the velocity

gradient increases, the peaks of the spectra of xu"'2 move to lower wavenumbers because the spectrum of the production term b'zq>22

in equation (5-380) moves to the left (see fig. 5-54). Since the production term in the equation for the spectrum of x 2 ,

equation (5-381), is proportional to Y2,the peaks of the spectra of "cz also move to lower wavenumbers.

The spectra change from approximately symmetric curves to curves having more gradual slopes on the high wavenumber

sides as a_2 increases. The changes in shape of the spectra are apparently caused by a transfer of activity from low wavenumbers

to high wavenumbers or from big eddies to small ones. This transfer is generally associated with triple correlations (ref. 31), but

in the present case, where triple correlations are neglected, it is associated with the velocity gradient. Thus we can interpret the second

terms in equations (5-380) and (5-381) as transfer terms. In order to do that, note that for our case re_/_r k in equation (5-298)

becomes r2_zu _/_r 1 , which is related to g:1¢_Y2/_2 in equation (5-380) by
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(5- 393)

For r = O, this becomes

___I_ ! _ dr = O. (5 - 394)

Similarly, in equation (5-381)

08 dJc = O. (5- 395)
_ K1 01f2

m

So these terms give zero total contribution to 0 _-_2/0t or xoO ,_2/_t. However, they can alter the distribution in wavenumber space
"-"7

of contributions to _ _22/_t or 0 x 2/0t, and thus can be interpreted as transfer terms. A similar term in the equation for uiu j was

obtained in section 5.4.2.1.

The expressions for the transfer terms in equations (5-380) and (5-381) can be integrated over all directions in wavenumber

space by using equations similar to equations (5-390) and (5-391) in order to obtain quantities that are functions only of K and

dOl/dX2. A plot of the integrated transfer term corresponding to x 2 is given in dimensionless form for a Prandtl number of 1 in

figure 5-77. This term corresponds to the second term in equation (5-381) with the exception that it has not been multiplied by al2.

The total area enclosed by each curve is zero, in agreement with equation (5-395). The curves are predominately negative at low

wavenumbers and positive at higher ones, so that, in general, contributions to x 2 are transferred from low wavenumbers to high

ones. In this way the higher wavenumber portions of the spectra of x 2 in figure 5-76 are excited by the transfer of activity into those

regions, so that the shapes of the spectra are altered. This effect is similar to that due to triple correlations (ref. 31). In the present

case a natural explanation of the effect is that the transfer to higher wavenumbers is due to the stretching of the vortex lines in the

turbulence by the velocity gradient. The velocity gradient should also be able to compress some of the vortex lines, particularly at

low velocity gradients where the orientation of the vortex lines would tend to be random. This might explain the small amount of

reverse transfer at low wavenumbers and low velocity gradients in figure 5-77.

Production, temperature-fluctuation, and conduction regions. By analogy with the interpretation of the equation for

turbulent energy in section 5.4.2.1, one can say that the third term in equation (5-3 81) produce s temperature fluctuations by the action

of the mean temperature gradient on the turbulent heat transfer xu2 • In the corresponding production term in the turbulent energy

equation the mean velocity gradient does work on the turbulent shear stress. The last term in equation (5-381) is the conduction or

dissipation term and tends to destroy the temperature fluctuations by conducting heat away from regions of high local temperature.

This action is similar to the action of viscosity on the velocity fluctuations.

The production and conduction terms in equation (5-381) can be integrated over all directions in wavenumber space by

substituting F 2and A for )'2and (5respectively in those terms. These terms, together with the spectrum of q_2 arc ploRed in normalized
_t

form in figures 5-78(a) and (b) for two values of ale and a Prandtl number of 1. For the low dimensionless velocity gradient the

production, temperature fluctuation, and conduction regions are but slightly separated. On the other hand, for the high velocity
• S

gradient (al2 = 50), the production takes place mostly in the low wavenumber or big eddy region and the conductive attenuation

occurs in the high wavenumber region. The conductive attenuation occurs mostly in the high wavenumber region because
conduction effects tend to "smear out" the small-scale temperature fluctuations more readily than the large ones. Note that the

appearance of the curves in figure 5-78 is similar to that of the curves for the turbulent energy in figure 5-62•
One might summarize the history of the temperature fluctuations at high velocity gradients as follows: the temperature

fluctuations are produced by the mean temperature gradient mainly in the big eddy region. This temperature-fluctuation activity

or "energy" is transferred from the big temperature eddies to smaller ones by the action of the velocity gradient. Finally the
temperature "energy" is dissipated by conduction effects in the small eddy region. The separation at high velocity gradients of the

three regions shown in figure 5-78(b) is analogous to the separation of the production, energy-containing, and dissipation regions

associated with the turbulent energy uiu i / 2 (fig. 5-62(b)).

Temperature-velocity correlation coefficient. The temperature-velocity correlation coefficient as introduced by Corrsin

_/f__---_--_l / 2

(ref. 106), is defined as _:u2/_ x u2 ) . For perfect correlation between x and u2, this coefficient will have a value of 1. The
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coefficientcanbecalculatedbymeasuringtheareasunderthespectrumcurvesinfigures5-75and5-76andinfigure5-54.Aplot
ofthetemperature-velocitycorrelationcoefficientagainstdimensionlessvelocitygradientisgivenforaPrandtlnumberof 1in
figure5-79.Forzerovelocitygradient,perfectcorrelationbetweenthetemperatureandvelocityfluctuationsisindicated.Itshould
bementionedthatthisresultappliesonlytoaPrandtlnumberof 1.ThePrandtl-numberdependenceofthecoefficientforzero
velocitygradientisgivenbyequation(78)ofreference107.Asthevelocitygradientincreases,figure5-79indicatesthatthe
correlationbetweenthetemperatureandvelocityispartiallydestroyed.Atavalueof a_2of50thecorrelationcoefficienthas
decreasedtoabout0.5.

Ratio of eddy diffusivities for heat transfer to momentum transfer. The eddy diffusivities for heat transfer and for

momentum transfer are defined as

zu 2
Eh = (5 - 396)

dT/ dx 2

and

e= UlU2 . (5-397)
dU 1 / dx 2

The eddy diffusivity ratio eh/e is of considerable importance in the phenomenological theories of turbulent heat transfer and is

usually assumed to be one. In fact that assumption gives the best agreement between analysis and experiment (fig. 4-4), except,

possibly at very low Prandtl or Peclet numbers (refs. 109 and 110). A dimensionless eddy diffusivity for heat transfer

v 5 / 2 (t - t0)3 / 2 eh 1 J0 can be obtained from the areas under the curves in figure 5-75. A similar dimensionless eddy diffusivity

for momentum transfer is given in figure 5-58. The ratio eh/e is plotted in figures 5-80 and 5-81. Figure 5-81 is included inasmuch

as the eddy diffusivity ratio for a_2 = 0 is not given in figure 5-80. This case corresponds to isotropic turbulence and can be calculated

from the results in figure 5-58 and reference 107. For small velocity gradients eh/eis greater than 1 except for the low Prandtl number.

However, as the velocity gradient increases, Eh/E ultimately decreases and approaches 1 at large velocity gradients. This is shown

on a spectral basis in figure 5-82, where the dimensionless spectra ofeh and e for a Prandtl number of 1 are compared. As the velocity

gradient increases, the spectrum curves of eh and _ approach each other rapidly in the high wavenumber or small eddy region and

somewhat more slowly in the low wavenumber region.
The approach to 1 of r_h/eas the velocity gradient increases, occurs at all Prandtl numbers. This can be seen by inspection

of equation 5-385a which indicates that for large values of the velocity gradient a12, the effect of Prandtl number on 72 and thus on

ela is negligible. However, the effect of Prandtl number is much greater at low values of Pr than at higher ones. This is because the

terms in equation 5-385a which contain Prandtl number vary much more rapidly with low values of that quantity than with high

ones.

Figure 5-80 indicates that as the velocity gradient increases, the approach of eh/eto 1 is most rapid for Prandtl numbers

on the order of one and least rapid for very low Prandtl numbers.
It is of interest to compare the various terms in the differential equations for _/b2 and qh2/a 12at high values of a12. The

quantities _/b2 and 912/al2 will, when integrated over wavenumber space, give eh and e. Equation (5-380) can be written in terms

of 72/b2 as

3(Y2 'bo) 3(Y2 'b2) IqI¢2fiT2_- (l---+l_vlc2(Y2_ (5-398)
" a12K1 =-q)22+2a12 K:2 _.b2) \Pr J _,_'2f_t 3K 2

From equation (5-324),

3(%2/a12) 3(q°12/a12) .'_al2KlK2(qh2"_-'_-- -2vK:2(q01----2-21 (5-399)
3t al2Kl c3K2 = -q)22 1- z K2 _,a12 _ _ _ K2 V22 _,al 2 j"

These equations for "/2/b2 and for (P12/a12 are the same except for the last term in equation (5-398) and the last two terms in

equation (5-399). It appears, however, from the forms of the equations that these terms should not be important for high values of

a12. The next to the last term in equation (5-399) arises from the pressure fluctuations.
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Although equations (5-398) and (5-399) are similar for large values of az2 the initial conditions for y2/b2and ¢P12/a12are
different, the initial form for q_12being given by equation (5-333) whereas'l,2is initially zero. However, a numerical check indicates

tha'__/b 2 and q_12/a12as well as the integrated values _hand E, are essentially equal for large values of a_2. This suggests that the

initial conditions have a negligible effect on the results for large times or velocity gradients.

The calculations in this section are for the case where both the velocity and temperature gradients are in the x2-direction.
Fox (ref. 111) has considered a temperature gradient in an arbitrary direction on a plane normal to the flow direction. He showed
that for large values of(t- to) dU l/dX2, the thermal eddy diffusivity corresponding to the temperature gradient normal to the velocity

gradient can be much larger than that for the temperature gradient in the direction of the velocity gradient. That seems reasonable

since xu2 should be smaller than xu 3 because of the smaller velocity fluctuations in the x2-direction (see section 5.4.2.1). The

results do not support an assumption sometimes made that the radial and circumferential thermal eddy diffusivities in a turbulent
tube flow are equal

It is hard to make comparisons between the present results and a steady-state pipe flow or boundary layer inasmuch as a _2

contains time. However, we can make a rough estimate of the order of magnitude of a_2 for a steady state case as follows. From

the turbulent energy spectra in figure 5-56, X:averag e ~ 1. Then an average length, 1/ X:average = L, associated with the turbulence

is Iv(t- to)]I/2. Let 5 be the radius of the pipe or the thickness of the boundary layer and U be acharacteristic mean velocity. Letting

t- to~ L2/v (see above), dUl/dx 2 ~ U/& and L ~ 0.35, a_2 will be on the order of 0.1 US/v. Thus for values of mean flow Reynolds

numbers usually obtained in the turbulent flows, _h/_, according to figure 5-80, will probably be close to I for gases and liquids.
For liquid metals _/e may be less than 1, in qualitative agreement with those analyses which use a modified mixing-length theory
to account for heat conduction to or from an eddy as it moves transversely in a mean temperature gradient (refs. 109 and 110). In
making the above comparisons, it should of course, be remembered that the present calculations are for an idealized ease which has
only a partial correspondence to a passage or boundary layer. A discussion of possible differences between the two cases is given
in reference 87.

Except for some qualitative discussion in chapter I we have not yet considered the effect of buoyancy on turbulence. To
do that we will first study a simple (at least conceptually simple) case in which buoyancy effects are present, but mean velocity
gradients are absent.

5.4.2.4 Turbulence in the presence of a vertical body force and temperature gradient.--Th¢ analysis described here is
concerned with the effect of buoyancy forces on a homogeneous turbulent field (ref. l 12). The buoyancy effects are produced by

a uniform vertical temperature gradient and body force. Equations (5-314) to (5-320) become, for t)Ui/0x j = 0,

_iJ/)t = -p (ilcjk_- i_ik j )- 2VK:2tPij- _gj)'j - 13giy_, (5 -400)

_lK2_. j = _gkiKkYj ' (5-- 401)
P

_ 11¢2k _ = __gki_kT_ ' (5 - 402)
P

3T___j= aT 1 i_cj_' - (ct + v)K2'yj - _gj 5, (5 -- 403)
Ot q_kjax k p

_ aT 1 ,. ,
at = -tPik _ + p Ki_ - [,Or+ V)K2T_ - 13gi 5,

(5-404)

1 K2_ = _gki_: k 5, (5 - 405)
P
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and

_ 11£2_, = __gkiKk 8, (5 - 406)
P

"_" =-()'k +)'k) - 20t_: 2 5.
(5 - 407)

Equations (5-400) to (5-407) should apply when the terms responsible for buoyancy effects are large enough, or the turbulence weak

enough, for the triple correlation terms to be reasonably small compared with other terms in the correlation equations. Substitution

of equations (5-401) and (5-402) into (5-400) and equations (5-405) and (5-406) into (5-404) and (5-403) shows that tPij= _ji and

7i = )'[ for all times if they are equal at an initial time. Here it will be assumed that the turbulence is initially isotropic and that the

temperature fluctuations are initially zero, so that the above relations will hold. Thus the set of equations (5-400) to (5-407) becomes

3tPiJ - _gk _kl_J KkKi
a----F-- --'_'- Yi +l_gk --_'- Vj - 2vl_2tPij - 13gi)'j - _givi,

(5 - 408)

_t'j aT _ lCkl(; 2
)'j-l gj 5,-_t =-tPkj_--_k+Pgk

and

as_ 2 aT 2o_:2
-if-- - 5.

Assume that the only nonzero component of g is in the negative vertical direction, and let

g - -g3.

Also, assume that the uniform temperature gradient is in the vertical direction, and let

b 3 = aT / ax 3.

Letting i =j = 3 in equations (5-408) to (5-410),

2

dtP33_'t= -213g _2 )'3 - 2VK2tP33 + 2_g)'3,

(5-4o9)

(5-410)

(5-411)

(5 - 412)

(5 -413)

and

2

dJ.3dt= -b3¢P33 -13g_ "_"5- (°' + v)_2)'3 +_g 8,
(5-414)

d8
= -2b3Y 3 - 2ate 2 5. (5 - 415)

dt

Contracting i and j in equation (5-408) gives

d_ii = -2v_:2tPii + 213g)'3. (5 - 416)
dt

The pressure term (second term in equation (5-413) drops out of equation (5-416) as can be seen from equation (5-296) and the

relations a/arj = --c3/axj and a/ari = a / axe. Thus, as in the case of homogeneous turbulence without buoyancy effects, the pressure

term transfers energy between the directional components of the energy but gives no contribution to the change of energy at a

particular wavenumber.
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Solution of spectral equations. A general solution of the simultaneous equations (5-413) to (5-415) is

_033 = Ci exp[-(a + v)1¢2 (t - t0)]+ C 2 exp{-[(a + v)1¢2- s](t-t o)}

(5-417)

and

where

y3= -(CI (ct -v)_ 2 exp[-(a + v)_:2 (t- to)I+ C2[(a -v)_: 2 -s] exp{-[(a + v)t: 2- s](t- t0)}+ C3[(w - v)_:2 + s]

(5-418)

.

15= (2Clb3_gCl - _'22) exp[-(°c + v)lc2(t - to)] + C2 [(°t- v)2 It4 - (°t - v)<2s- 2b3'gl 1- 1_32_1_'_')J

x exp{_[(o_ + v)le 2 _ s](t_ to)} + C3[(a_ v)21c 4 + (_._ v)le2s_ 2b3_g(1 - _-)j<32_11
(5-419)

S - _/(a - V)2 !_4 - 4b31_g(1 - 1¢2 / 1¢2 ) (5 - 420)

and Cl, C2, and C3 are constants of integration.

For determining the constants of integration, we use the initial conditions that, for t = to, the turbulence is isotropic, and
T3= _ = 0. The last two conditions correspond to the assumption that the temperature fluctuations are zero at t = to. This would be

true, for instance, if the turbulence were produced by an unheated grid. The mean temperature gradient would then cause temperature

fluctuations to arise at subsequent times. The assumption that the turbulence is isotropic at t = to implies that for our case

((PiJ)0:J0 _2_.._Kil_j) '121t2 I, _J
(5 -333)

as given in section 5.4.2.1. The turbulence is not, of course, isotropic at subsequent times, as will be seen. By using these initial

conditions, the constants of integration are found to be

Jo_2b3_g(1- g2 / 1_2) 2

C 1 = 67t2s 2 '
(5 - 421)
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(5- 422)

and

For small values of _ the quantity s, as given by equation (5-420) becomes imaginary. In that case the following solution

can be used:

(5 - 425)

where

St __ (5- 427

C_ = Jol_2b3l_g 1- 6/t2s '2 , (5 - 428)

and

C_ = JOK2(1- _2 )[2b3_g(1- _2 1- (_ - v)2 K41:12/_s'2 ) •

[ ']: 5C_ = Jo K4 1- O_-V 12n2s ' •

(5-429)

(5 - 430)

ISWe have also analyzed magneto-fluid dynamic turbulence with a uniform imposed magnetic field (Phys. Fluids, vol. 6, no. 9, 1963, pp. 1250-1259). The solutions

there are the same as those obtained here if some of the variables represent different quantities.
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Finally,solution of equation (5-416) gives

I (1)33 ]

(JoK2")-2vle2(t-t°)

[ _ t _...j j + Ci-_"_-2Je . (5-431)

Although the quantities lj, Yi, and 8 are of interest in themselves, it is somewhat easier to interpret quantities that have

been integrated over all directions in wavenumber space as suggested by Batchelor (ref. 4). Thus, a quantity _ij can be defined by

the equation

Vii (K) = _: tpij dA, (5 - 432)

where A is the area of a sphere of radius K. Then, since

u---i_ = _:_ij dK (5-433)

(let r = 0 in equation (5-304)), _ij die gives the contribution from the wavenumber band die to uiu j .

The equations for (1)33, tPii, )'3, and _ can be written in spherical coordinates by using the transformations

le1 = lecos_sin 0,

K2 = Icsin glsin0,

and K3 = ie cos0.

Then, since (1)33(as well as qlii, )'3, and 5) is not a function of the angle ql, the expression for W33 from equation (5-432) can be
written as

tlS33 = 4n le2Soltp33 d(cos0). (5 - 434)

We can write similar expressions for tpii, )'3, and I5integrated over all directions in wavenumber space:

2 i" 1
= 4r_ ie Jo tpii d(cos0), (5-- 435)_Sii

1"3 = 4nK2_ )'3 d(cos0), (5 m436)

and

2 i'jl
A = 4hie Joi5 d(cos0). (5 -437)

Letting r = 0 in equations (5-309) and (5-311),

_-_'uj= S: Fj die (5-438)
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and

=SoA d_:, (5 - 439)

m

so that, as in the case of Wij, Fj dK, and A d_: give, respectively, contributions from the wavenumber band d_: to x'u"--_and x 2 .

Computed spectra of the various turbulent quantities will be considered in the next section.
Effect of buoyancy on the turbulence. Before we consider in detail the spectra computed from the foregoing analysis,

it may be worthwhile to indicate physically how the buoyancy forces would be expected to alter the turbulence. Figure 5-83 shows
the effects of a negative and a positive vertical temperature gradient with the body force directed downward. For a negative

temperature gradient, a turbulent eddy moving upward, for instance, will usually be hotter than the surrounding fluid. If the fluid

has a positive temperature-expansion coefficient, the eddy will also be less dense than the surrounding fluid, so that buoyancy forces
will tend to accelerate it upward. Similarly, an eddy moving downward will usually be accelerated downward. Thus, the negative

temperature gradient tends to feed energy into the turbulent field, so that its effect is destabilizing. For a positive temperature

gradient, it can be seen that the effect will be opposite to that just described; that is, the buoyancy forces will tend to stabilize the

fluid.
Consider now whether it is possible, according to our analysis, for buoyancy to cause a growth of turbulence at large times.

We recall that in section 5.4.2.1 a uniformly sheared turbulence ultimately decays. The energy fed into the turbulence by the mean

gradient is less than that dissipated. However, the effect of buoyancy, as analyzed in the present section, is different. Consider

equations (5-417) and (5-420). For (c_-v) 2 _:4> 4b 3 I]g (1 - _:_/_) and s > (or + v)n 2 the argument of the second exponential in

equation (5-417) is positive and increases without limit for large times, and so does _033.So at least for some regions of wavenumber

space, more energy can be fed into the turbulence than is dissipated, and the turbulent energy ultimately grows.
A dimensionless plot of the evolution of the turbulence, as calculated by integrating _0ii over wavenumber space, is

presented in figure 5-84. The turbulent energy does indeed grow at large times, for a destabilizing temperature (density) gradient,

as predicted in the last paragraph.
Loeffler (ref. 113) has considered the effect of a gradient in electrical charge and an applied electric field on homogeneous

turbulence. That problem is analogous to the present one for an infinite Prandtl number. It was determined that the turbulent energy
increases without limit as time increases, when the electric field is in the direction of increasing charge density. For large times the

turbulent energy was proportional to (exp t(b))l(t(b)) 3.16

Dimensionless energy spectra (spectra of uiu----_) are plotted in figure 5-85. For making the calculations, the indicated

integration in equation (5-235) was carried out numerically. When plotted using the similarity variables shown, the spectrum for

no buoyancy forces (g* = 0) does not change with time, so that comparison of the various curves indicates how buoyancy effects
will alter the spectrum. Thus, ifa dimensionless spectrum curve lies above the curve for g* = 0, the turbulent energy for that case

is greater than it would be for no buoyancy forces. Curves are shown for Prandtl numbers v/o_ of 0.7, 10, and 0.01. These Prandtl
numbers correspond, respectively, as far as order of magnitude is concerned, to a gas, a liquid like water, and a liquid metal.

Negative values of the buoyancy parameter g*, defined as b3[_(t- t0)2g, correspond to negative temperature gradients, and

positive values correspond to positive temperature gradients. (The quantity, b3 in the definition of g* is the temperature gradient.)
In agreement with the discussion in connection with figure 5-83, the areas under the spectrum curves increase for negative

temperature gradients and, in general, decrease for positive ones. A reversal of the expected trend is shown by the curve for a Prandtl

number of 10 and a g* of 4. The action of the buoyancy forces in producing turbulent energy is particularly evident for a Prandtl

number of 0.01 and negative values of g*. There, the buoyancy forces tend to produce an extra peak in the spectra in the low-

wavenumber or large-eddy region.
Terms in the spectral energy equation, as well as energy spectra, are plotted in figure 5-86 for cases in which the buoyancy

forces augment the turbulence. The curves are normalized to the same height for comparison. The terms for the energy equation
were obtained by integrating the terms in equation (5-416) over all directions in wavenumber space by using equations (5-435)

and (5-436). The second term in equation (5-416) gives the turbulent dissipation, and the last term gives the effect of buoyancy forces

on the turbulence.
Consider first the curves in figure 5-86 for Prandtl numbers less than 1. Those curves indicate that the spectrum of the

buoyancy term tends to coincide with the energy spectrum for Prandtl numbers less than 1. That is, the energy from the buoyancy
forces feeds into most of the parts of the energy spectrum. On the other hand, the dissipation regions are considerably separated from

the energy-containing regions, the separation being greater for the lower Prandtl number. The dissipation regions for the two Prandtl

t 61..oeffle r also pointed out that according to the present analysis the turbulence need not decay at large times for destabilizing temperature gradients. The implication

in our reference 112 that according to our analysis the turbulence always decays at large times should therefore be disregarded.
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numbersareclosetogether, thus indicating that buoyancy forces, which are influenced by Prandtl number, do not greatly influence

the dissipation for Prandtl numbers less than 1. The dissipation occurs mostly at high wavenumbers, where the effect of buoyancy
forces is not important. The low-wavenumber parts of the energy spectrum, by contrast, are much more affected by buoyancy forces

at low Prandtl numbers than at higher ones, because the eddies associated with the temperature-velocity correlations (see equation

(5-296)) are much larger at low Prandtl numbers. The spectra of the temperature-velocity correlations will be considered later (see

fig. 5-90).

The curves in figure 5-86 for aPrandtl number of 10 indicate that for high Prandtl numbers, in contrast to the case of Prandtl

numbers less than 1, the buoyancy forces can act on the small eddies. As a result of this effect, the buoyancy forces alter the

dissipation spectrum for high Prandtl-.__numberfluids.

Dimensionless spectra of u32 , which is the component of the turbulent energy in the direction of the temperature gradient

and body force, are presented in figure 5-87. The curves are somewhat similar to those for the spectra of uiu i and exhibit double

peaks at the low Prandtl number. However, some of the spectra for u] also have double peaks for a Prandtl number of 10. These

are apparently caused by the action of the buoyancy forces on the small eddies. Another unexpected result is that the curve for a
Prandtl number of 10 and a g* of 4, although for a case where the buoyancy forces would be expected to be stabilizing, lies above

the curve for no buoyancy effects. The physical reason for this result is not clear. It may be that some of the eddies, in this case,

oscillate several times before being damped out.

In ge_._neral,the turbulence is anisotropic. The anisotropy of the turbulence is clearly seen in figure 5-88, where the spectrum

curves for u32 divided by those for uiu----_./3 are plotted. For isotropic turbulence all values ofv33,/(_-fi/3) would be 1, inasmuch as

_/a/3 represents the average spectrum of the components of the energy. For destabilizing conditions u 2 is higher than the average

component, whereas for stabilizing conditions it is lower. This is physically reasonable, inasmuch as the buoyancy forces would

be expected to act mainly on the vertical components of the velocities of the eddies. In fact, equation (5-408) indicates that the

buoyancy terms (last two terms) occur only in the equation for 933 for a vertical body force.

For Prandtl numbers less than 1 the anisotropy is most pronounced in the large-eddy region, so that apparently the buoyancy

forces act mostly on the large eddies. In the small-eddy region the curves for Prandtl numbers less than 1 approach 1, so that the

turbulence is isotropic in the smallest eddies. Thus, the theory of local isotropy seems to apply here. This observation is in opposition
to that for turbulence which is weak and/or for which a uniform mean velocity gradient is large, where local isotropy was absent

(section 5.4.2.1). Also, the curves in figure 5-88 for a Prandtl number greater than 1do not show local isotropy. Thus, local isotropy

seems to be obtained only for Prandtl numbers less than 1 in the present analysis. The situation may be different for high turbulence

Reynolds numbers and small mean gradients.
It was originally thought that the difference between the results for Prandtl numbers less than and greater than 1 was caused

by a difference in the effect of pressure forces in the two cases. A calculation with the pressure-force terms absent, however, indicated

that those terms have but a minor effect on the results. It appears that the effect is due to the way the buoyancy forces act in the two

cases and that the buoyancy forces can act even on the smaller eddies at high Prandtl numbers. This is in agreement with the curves

in figure 5-86.

Spectra of the temperature variance x 2 are plotted in figure 5-89. For g* = 0, the results reduce to those of Dunn and Reid

(ref. 107). The trends with g* are similar to those for the spectra of uiu-"-_.; that is, the areas under the curves are larger for negative

than for positive temperature gradients. However, the areas under the curves for tow Prandtl numbers are much smaller than for the

higher ones because, for the same viscosity, the high thermal conductivities associated with lower Prandtl-number fluids tend to

smear out the temperature fluctuations. As Prandtl number decreases, the spectra move into the lower wavenumber regions because
the conduction effects tend to destroy the small temperature eddies more readily than larger ones.

The last spectra to be considered are those of the temperature-velocity correlations xu 3 .These are plotted in dimensionless

formin figure 5-90. The quantity xu'-"_is proportional to the turbulent heat transfer. The total heat transfer q3 is the sum of the laminar

and turbulent heat transfer, it is given by

q3= _,dx3 J pep 'k'U3'

where k is the thermal conductivity and Cp is the specific heat at constant pressure. Inasmuch as the temperature gradient b3 occurs
in the denominator of the dimensionless spect_m function in figure 5-90, those curves can also be considered as the spectra of the

eddy diffusivity for heat transfer. The eddy diffusivity for heat transfer _ is defined by
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%u3
Eh

dT/dx 3

The spectra indicate that, when the buoyancy forces are destabilizing, the turbulent heat transfer is greater than it would be without

buoyancy effects. This is congruous with the effect of buoyancy forces on the turbulent intensity shown in figure 5-85. Similarly,

for positive values of g*, the turbulent heat transfer is less than it would be for no buoyancy forces. However, as g* continues to
increase, the turbulent heat transfer goes to zero and then changes sign. That is, the turbulence begins to transfer heat against the

temperature gradient. This is shown somewhat more clearly in figure 5-91, where the temperature-velocity correlation coefficient

_33/[ (x2"--'_I/2( _)i/2] is plotted against g*. As g* increases, the sign of the turbulent heat transfer oscillates. Although these are

rather surprising results, turbulence has on occasion been observed to pump heat against a temperature gradient. This occurs, for

instance, in a Ranque-Hilsch vortex tube, where expansion and contraction of eddies in a pressure gradient can cause heat to flow

against a temperature gradient. The effect observed here, however, appears to be caused by the action of the buoyancy forces on

the eddies. In the stabilizing case, the buoyancy forces ordinarily act in the direction opposite to that in which an eddy starts to move

(see fig. 5-83), and so the sign of the velocity fluctuation might be changed without necessarily changing the sign of the

corresponding temperature fluctuation. Thus, it appears possible that the direction of the turbulent heat transfer could be reversed.

For negative values of g*, figure 5-91 indicates that nearly perfect correlation between the temperature and velocity

fluctuations is approached. This, again, can be explained by the action of the buoyancy forces. Thus, as was mentioned previously,
an eddy moving upward in a negative temperature gradient will usually be hotter than the surrounding fluid and so will be pushed

upward still more by the buoyancy forces. If an eddy moving upward happens to be cooler than the surrounding fluid, it will be

pushed downward. Therefore, positive contributions to xu---'_are amplified, whereas negative contributions are damped out by the

buoyancy forces, so that the net effect is to increase the value of xu_ toward 1.

It appears that by using the present method of analysis we can profitably study many of the turbulent processes. It is true

that because we neglected triple-correlation terms we were not able to study the transfer of energy between eddies of various sizes,

but that is only one of the important processes occurring in turbulence and can be studied separately. For instance, we could, as in
section 5.3.2.2, consider three-point correlation equations and neglect fourth-order correlation terms. However, if that were done

in the present case, where buoyancy effects are considered, the problem might tend to let out of hand. Alternatively, if a mean

velocity gradient as well as a temperature gradient were included, we would obtain a transfer of energy from large to small eddies

as in section 5.4.2.1, even though triple correlations were neglected. That will be done in the next section. It appears that the method

of analysis followed here gives information about other turbulent processes such as the dissipation and the production or extraction

of energy by buoyancy forces. Note, in particular, the solutions obtained for destabilizing buoyancy in which the turbulence does

not die out at large times (fig. 5-84).
5.4.2.5 Effects of combined buoyancy and shear on turbulence._The effects of shear and of buoyancy are considered

separately in sections 5.4.2.1 and 5.4.2.4. In real situations, for instance in the atmosphere, the two effects occur simultaneously.

The speculative theory given in reference 114 considers that case.
Herein, the methods used in sections 5.4.2.1 and 5.4.2.4 are extended to analyze the combined effects of buoyancy and

shear on homogeneous turbulence (ref. 115). 17 We consider the case where the velocity and temperature gradients are in the

x3-direction (vertical) and the body force (gravity) is in the -x3-direction. Then equations (5-313) to (5-320) become

_tiJ + 8ilal3cP3j + 8jlal3cPi3 - al3Kl _ = - p(il<j_'_ - iKi_'j)- 2vlc2q)ij + [_i3gYJ + [_J 3gY_'
(5-440)

08 . , 06

"_-+ D3"/3 + b3'Y3 -al3K1 _ = -2_K28,
(5 - 441)

_'/J + b _/J = -_ iKj_' - (ix + V)_c2Tj + _g_ij38,3q13J+ a1381j"/3 - al31(l _'-'_
(5 -442)

tTWehave applied this analysisto the growth of random vortices to form tornadoes in an unstableatmosphere with vertical shear (see J. Atmos. Sciences, vol. 34,
1977.pp. 1502-1517).
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-_- + b3_i3 + al3_il)' 3 - al3K I _3K3 -- --(tx + V)K2_t_ + -- i_i_ + _g_i3 _,

-11¢2_,_ = -2al3i_¢1_i3 + l_gir3Y _,
P

(5- 443)

(5-444)

_ 1 K2_,j = 2a] 3iKl(P3j -- _giK37 j, (5 --445)
P

and

1
---'r2_ = 2a13i_:17_ - I_gi_:38, (5 - 446)

P

_ 1 K2_, = _2al3iKlT3 + i_gir 36' (5 - 447)
P

where, as in earlier sections, g = -g3, a13 = dUl/dX3, b3 - dT/dx3, and the spectral quantities are defined by equations (5-304)

to (5-311). Substitution of equations (5-444) to (5-447) into equations (5-440) to (5-443) shows that _j = _ji and _ = 7[ for all times
if they are equal at an initial time. It will be assumed herein that the turbulence is initially isotropic and that the temperature
fluctuations are initially isotropic and that the temperature fluctuations are initially zero, so that the above relations will hold. Thus,
the set of equations (5-440) to (5-447) becomes

a_OiJot= a131¢1_3a(PiJ- al3(_iiltPj3 + _51jtPi3) + 2a13 [7(Pi3 + 7t'PJ3jKIK" KiKI "_

+l_g7i(Gj3 -'-'_] +_g'Yj_Gi3K31gJ"_ ( _ _)_ 2Vg2tPij,
(5- 448)

and

----_t 13 1 _-- b3(Pi3 + a1373_2-'_'_-'-_il ] + [_g_(_i3 -_23 )-((x + V)K27i ,

_ _ - 2b3Y 3 - 2_¢2_.--_-= al3K 1

(5-449)

(5 - 450)

Equations (5-448) to (5-450) give contributions of various processes to the rates of change of spectral components of uiUj,

"m"_.,and ,_2, respectively. The second term in each equation is a transfer term which transfers activity into or out of a spectral

component by the stretching or compressing of turbulent vortex filaments by the mean velocity gradient, as discussed in sections
5.1.2.1, 5.4.2.1, and 5.4.2.3. The terms with _2 in the denominator are spectral components of pressure-velocity or pressure-

temperature correlations and transfer activity between directional components (sections 5.4.2.1 and 5.4.2.3). The terms proportional

to _g and _i3 (or gj3) are buoyancy terms which augment or diminish the activity in a spectral component by buoyant action. The
last terms in the equations are dissipation terms, which dissipate activity by viscous effects (eq. 5-448) or by conduction effects
(eq. 5-450). The dissipation term in equation (5-449) contains both viscous and conduction effects, inasmuch as it dissipates spectral
components of velocity-temperature correlations. The remaining terms in the equations produce activity by velocity or temperature-

gradient effects. Although a buoyancy term does not appear in equation (5-450), buoyancy affects _ (or x2 ) indirectly through the

temperature gradient and 73 (or xu 3 ).

For solving equations (5-448) to (5-450), the turbulence is assumed to be initially isotropic at t = to. That condition is again
given by equation (5-333):
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( 0ij)o= J0 &2a
12_2 _. u

(5 - 333)

where Jo is a constant that depends on initial conditions. For the initial conditions of Sand _ (at t = to), it is again assumed that

$0 = (Ti)0 = 0. (5-- 451)

That is, the turbulence-producing grid is assumed to be unheated, so that the temperature fluctuations are produced by the

interactions of the mean temperature gradient with the turbulence.

Solution of spectral equations. In order to reduce the set of partial differential equations, equations (5-448) to (5-450),

to ordinary differential equations, the running variables { and rl are considered, of which at _:3 and t are particular values such

that _ = _3 when rl = t. If _and 11are introduced into the set of equations in place of n3 and t, the resulting equations will, of course,

automatically satisfy the original set. In addition,

+ al3_l(rl - 110 ) = constant (5 - 452)

during integration. Then

rl al3Kl { {+al3rt'q

(5 - 453)

where the subscripts outside the parentheses signify quantities which are held constant. Then equations (5-448) to (5-450) become

dlP33(_) = ---4 _g}33 2 _g (1- _2 1 1¢2 + 1¢2 + _2d_ K2 +K2 +_2 al3K1 _, K2 +K2 +_2 "1'3 +2V al3Kl 1P33, (5-454)

q033-2 Z 1 _5+ +1 v_f12+lf2+{2T 3,
d73(_)

d_ +K22 +_2 al3K 1 K2 +K2 +_2 al3K 1al3K1 K 1

(5-455)

d_({) 2b3 73 + 2a _¢12+ _¢2 + _2= _,
d_ al3Kl al3Kl

(5 - 456)

d_°13(_) q033 2 (_q)13 + K1_33) _g

d_ = -_-I- "_12+ _-_22"+-_ al#¢l
71 _ _- 2v1 '4 13gal 3 K2 + K2 + _2 al3K I

_13, (5 -- 457)

dqOll (_) 2
= _013 -- 4

d_ K:1

!¢1cP13 + 2[$g_71 + 2v K:2 + _:2 + _2 {PlI'

J¢_ +_¢I +_2 a130¢2 +r22 +{2) al3_ ,

(5 - 458)

and

2 2[_gT3 62V K2 + K2 + _2
_=--_13

K i al3K1 al3Kl
_0ii,

K 1 1 )d3'l({)-b3g'l---_3-d_ al3Kl 2K12+1c2+_2 _1 73

9

_- v+l v al3Kl

(5- 459)

71. (5-- 460)
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Note that the first three of these equations are independent of the remaining ones.

The constant in equation (5-451) subject to initial conditions given by equations (5-333) and (5-451), may be determined

by letting _ = _ when _ = 110,or G0 = _ +al3_q0q- _ 0). This equation applies for any value of _, and thus

_0 = 1¢3+ al31Ci(t- to). (5 - 461)

Equation (5-461) gives the value of _ at which to start the integration for given values of_:3, gl, a13, and t- t_ The initial conditions,

equations (5-333) and (5-451), may be satisfied by letting

and

q)33(_)---- Jo /'_2 +K2),12n2 _1

_013(_)= --12_Kl_0,

qOll(_)_ J0 [.,.2+_2),
12X2 _'_2

= J0 [K2+K22+_2),¢Pii 6X2 _ 1

"ti(_)= 8(g) = 0

when _ = _o.

The integration of equations (5-454) to (5-460) then goes from _ to _ = _:3- Final values of _0ij,3_, and 8, for which _ = K3 and
rl = t are of most interest. The quantity_ can be considered as a dummy variable of integration.

The following relations are introduced in order to rescale equations (5-454) to (5-460) and convert them to dimensionless
form:

vl/2(t- t0)!/2_¢i --.) 1¢i,

vll2(t- t0)1/2¢-_ ¢,

(5 - 462)

(5 - 463)

v8
8, (5 - 466)

Job2(t-t0)

(t - to)al3 --->a13, (5 - 467)

I_gb-----_3---) Ri, (5 - 468)
a23
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j-'_" Yi "_ _¢i, (5-465)

v(t-to)

J0 ¢Pij _ ¢Pij, (5 - 464)



and

v -_Pr, (5- 469)
a

where the arrow --_ means "becomes". In addition, spherical coordinates are introduced into the equations by using the

transformations

_:! = _:cosq0 sin 0,

_:2 = Ksin q0sin0,

K 3 = KCOS0.

(5 - 470)

Equations (5-454) to (5-460) then become

I _2 1 _:2 sin 2 0 + _2dtP33(_) _q)33 2 al3Ri 1 _2 73 +2 933, (5-471)d_ = --4 1(2 sin 2 0+ _2 _ccosq)sin0 _c2 sin 2 0+ al3_ccos _0sin 0

d?3(_) = 4 tP33 2_T3 _2 al3Ri_i 1d_ at3rcosgsin0 1(2 sin 2 0+ _:cosq_sin0 K2 sin 2 0+_ 2
(_) _;2 sin2 0+_2i+ + 1 )'3, (5 - 472)

al3K costpsin0

d_(_) 2]' 3 _- 2 K 2 sin 2 0 + _2-- _,

d_ a131(costpsinO Pr a131(cosq)sinO
(5 - 473)

dtPl3(_) = cP33 2 _tpl3 + 1((c°stpsin 0)tP33 al3RiYl
d_ K cosq)sin 0 r 2 sin 2 0+ _2 lccos tpsin 0

al3Ri_)'3 I(2 sin 2 0+ _2
+ 2 (P13, (5 - 474)

4 _2K2 sin 2 0+ al3KCos tpsin 0

d_ii (_) = 2q)!3 41((costpsin 0)_13

d{ _:cosq)sin 0 K2 sin 2 O+{ 2

2al3Ri_y I 1(2 sin 2 0 + _2
+ 2 911, (5- 475)

÷ _2 a131(cos(psin 0K 2 sin 2 0+

dq)ll(_) _ 2_13 2a13Ri)'3

d_ 1(cos 9sin 0 _cosq_sin 0

!( 2 sin 2 0+_ 2
+ 2 (Pii, (5 -- 476)

al3_Zcostpsin0

dYl(_) _ _13 + a13Ri_ _5
d_ a131(costpsin0 K2 sin 2 0+_2 '_0+_-2 a13_:cosq_sin 0

)'1, (5 - 477)

For integrating these equations, _ starts at

_0 = Kc°s0+al3 K c°stpsin 0'
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where

1 }K2sin2O,_o33(_) = _._2_ 2

and

and goes to Kcos O, where

= i,:(cos osi.ego,

¢Pll(_)= 1 {_2sin2cpsin20+_) '
12_ z _.

= 1o/  si. 
6_ x

Ti(_)=8(_)=O,

_0ij(_) = _0ij(_cos e),

and

_'i(_) = _'iO:cos O),

5(_) = 8(.: cose).

The integrations were carried out numerically for various fixed values of K, 0, (POi3,Ri, and Pr. Directionally integrated spectrum
functions can be obtained from

_ij

ri

A ex e2z

Aij - J0 J0

V/o

Aij

%j

Ti

5

flij
$

(Pij

.f_J_

Pc2 sin 0 dq) dO (5 - 478)

In this equation, D.ij is the vorticity spectrum tensor given by equation (5-345) and is related to ¢#ijby equation (5-348):

_"]ij = (_ij _2 - KiKj)q)ll - l_2(Pij • (5 -- 348)

The starred quantites (p_j and f_j give, respectively, components oI q_jand D_j in a coordinate system rotated 45 ° about the x2-axis

from the xl-axis toward the x3-axis. Since _0ijand D_j are second-order tensors, components in the rotated system are (see
eqs. (2-12) and (5-342), and footnote 14).
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and

1,<,,, ,r,,,1fill, = 2111_] + '- i_* 13J 7LE_33J

I I'_ :il fill] [li31..i. 1 tP33]
- "7n,,j"/"-l:'.rl. 2 I _']11 J Ll#13J

(5 - 479)

(5-480)

The spectrum functions given by equation (5-478) can be integrated over all wavenumbers to give

n

UiUj

xu___j
,C2

¢0i_j

(UiUj)*

_(_i_j ) *

---- I

JI}

I

Aiil

viii

.aij]

dK, (5 - 481)

where the stars again refer to components in a coordinate system rotated 45 °.
All the calculated results given here are for a gas with a Prandtl number of 0.7. Dimensionless energy spectra (spectra of

uiu-"--_ ) and spectra of x 2 are plotted in figures 5-92 and 5-93. The spectra are plotted for several values of (t - 10)dU Jdx3 and of

I_g(t- 10)2 dT/dx3" The parameter 13g(t- 10)2 dT/dx3 rather than the Richardson number Ri = [$g(t - 10)2 dT/dx3/(dU1/dx3) 2 is used

here since the use of 13g(t - 10)2 dTtdx3 and (t - to)dU l/dX3 enables us to consider buoyancy and shear effects separately. (The

Richardson number contains both buoyancy and shear effects.) The quantity [_g(t - to) 2 dT/dx3 is related to Ri and the shear

parameter by the equation

)2 dT (t- to) dU! Ril g(t-,o, <:1--77: dx3 (5 -482)

When plotted by using the similarity variables shown in figures 5-92 and 5-93, the dimensionless spectra for buoyancy

and shear parameters of zero do not change with time, and thus comparison of the various curves indicates how buoyancy and shear
effects will alter the spectra. Thus, if a dimensionless-spectrum curve lies above the curve for buoyancy and shear parameters of

zero, the turbulent activity for that case is greater than it would be for no buoyancy and shear effects.

Positive values of the buoyancy parameter correspond to stabilizing conditions, and negative values correspond to

destabilizing conditions. Figures 5-92 and 5-93 show that the trends with buoyancy parameter for a shear parameter of 2 ( a_3 = 2)

are similar to those in figure 5-85 for no shear. That is, in the destabilizing case, buoyancy forces tend to feed energy or activity into
the turbulent field, whereas in the stabilizing case they tend to extract it. Comparison of the curves with shear (solid curves) with

those without shear (dashed curves) for values of buoyancy parameter of-4, 0, and 4 indicates that for all three cases the effect of

the shear is to feed energy or activity into the turbulent field. Thus for the destabilizing case, the buoyancy and shear have similar

effects; but for the stabilizing case, they have opposite effects. Comparison of the curve in figure 5-92 for a dimensionless g of

4 and a shear parameter of 2 with that for those parameters = 0 indicates that for the former curve the energy added by the shear

effects approximately balances that extracted by buoyancy but that the wavenumber distributions for the two processes are slightly
different.

As the shear parameter increases, the spectra become asymmetric, the slopes on the high-wavenumber sides of the curves

becoming more gradual. The dot-dashed curves for a shear parameter of 4 and a buoyancy parameter of 1.6 are plotted to show this

effect. As in figures 5-56 and 5-76 the effect is due to the transfer of energy or activity into the high-wavenumber regions by the
transfer term associated with the mean velocity gradient (see the discussion in the paragraph following eq. (5-450)).

The buoyancy forces might be expected to act more strongly on the turbulent-velocity components lying in the direction
2--2

of those forces than on the other components. This expectation is confirmed in the plot of u 3/u I for no shear in figure 5-94. The
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2 ..-2" 2" "_ratio u 2/U 1 is greater than 1 in the destabilizing case and less than 1 in the stabilizing case. However, although u 3/u I becomes

small, it does not approach zero for highly stable conditions. Apparently u 2 begins to decrease as rapidly as, or more rapidly than

u2 , as the buoyancy becomes large.

The vorticity component ratio 0) 3 _12 is alSOplotted in figure 5-94. The trends for 0)3/0)I are opposite to those for
/"V2

u3/ui. For the stabilizing case, the vorticity tends to be aligned in the direction of the buoyancy forces. The turbulent velocities
__-_/

associated with that vorticity will then tend to be normal to the buoyancy forces, in agreement with the curve for u3/u 1 . For the
_2

destabilizing case, the vorticity tends to lie in directions normal to the buoyancy forces. That will tend to increase u3/u i as shown

in figure 5-94, al_..__oughthe ratio will not approach infinity, because even if all the vorticity lies in directions normal to the buoyancy

forces, u 2 or u_2 will not be zero.

In the preceding discussion, the effects of buoyancy forces on the turbulence components without mean shear were
considered. Next, consider the case of shear with no buoyancy effects. In that case, the turbulent vorticity (or vortex filaments) would
be expected to tend to align in the direction of maximum strain, which is at 45 ° to the mean velocity. Figure 5-95 shows turbulent

vorticity and velocity components ratios in a coordinate system rotated 45 ° counter clockwise about the x2-axis. If the vorticity were

all aligned in the direction of maximum strain, 0)2"/0)12" would be zero. The curve shows that there is a strong tendency for that

alignment to occur at moderate values of shear parameter, but the degree of alignment does not continue to improve as the shear
becomes large. The tendency for the vortex filaments to align in the direction of maximum strain is reflected in the trend for the

turbulent velocity components to become maximum in a direction normal to the maximum strain, as shown in the curve for

u]*/u 2. . The degree of alignment, however, does not continue to improve as the shear becomes large.
2"/"3"2

Combined effects of buoyancy and shear on u3/ui" are shown in figure 5-96. The curves show that for no buoyancy effects
2the turbulence component u3 , which is in the direction of the mean velocity gradient, is reduced in comparison with u 2 by the shear.

This trend also occurs for negative (destabilizing) values of dimensionless g and for small positive (stabilizing) values of

dimensionless g. For more strongly stabilizing conditions, the trends become more complex, and the curves cross over one another.
The effects of buoyancy and shear are considered separately in figure 5-96, which utilizes dimensionless g and the shear

parameter. Since the Richardson number contains both buoyancy and shear effects, one might suppose that its use would reduce

or eliminate the need for another parameter. Figure 5-97 shows that is not the case, since u3/u I is a strong function of both

Richardson number and shear parameter.
The ratio of two turbulence components which are normal to the body forces and mean velocity gradient plotted as a

function of dimensionless g and the shear parameter are shown in figure 5-98. For no shear u2/Ul is 1since the turbulence is axially

symmetric. For a shear parameter _0, the shear tends to destroy the axial symmetry and to reduce u2/u i below 1.

Consider next the turbulent heat transfer and the turbulent shear stress. Temperature-velocity correlation coefficients

--1211 "C2 U3 plotted in figure 5-99. The correlation _33 is proportional to the turbulent heat transfer in the

direcfioh of the temperatm_e gradient. The unusual feature of these results is that _33 changes sign as dimensionless g becomes
large. That is, for very stable conditions, the turbulence begins to pump heat against the temperature gradient. This phenomenon
was also observed in the results in figure 5-91 for a shear parameter of zero. As the shear increases, the value of dimensionless g

at which xu 3 changes sign increases.

Velocity-velocity correlation coefficients for shear are plotted in figure 5-100. At small values of dimensionless g, the

trends with shear parameter are opposite to those for figure 5-99; the values of u,o /Bo,)ko ; j are zero for a shear

pa meterof0,whilethevaluesof- ) j closeto forsmallshearparameteranddimensionlessg.
was the case for _3, ulu3 changessign asg* becomes large. As conditions become strongly stabilizing, the turbulence begins

to pump the fluid in such a way as to tend to increase the velocity gradient. Thus, there occurs, for sufficiently large values of
dimensionless g, a negative eddy viscosity as well as a negative eddy conductivity. Although anegative eddy conductivity can occur
with only buoyancy effects present, the occurrence of a negative eddy viscosity requires combined buoyancy and shear.

A possible explanation for the theoretically observed negative eddy viscosity and conductivity can be given in terms of
a modified mixing length theory as illustrated in figure 5-101. Normal turbulent heat transfer or shear stress is shown in the left
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pot'licn of the figure. An eddy originating at the mean velocity and temperature of the fluid at a point may move either upward or

down,yard. By conduction and viscous effects, it will tend to acquire the local mean temperature and velocity of the fluid as it moves,

and thus its path will curve toward the mean velocity or temperature line. When the eddy mixes with the fluid, it will tend to decrease
the mean temperature and velocity gradients. The effective eddy conductivity and viscosity will be positive since they act in the

same direction as the molecular conductivity and viscosity.

By contrast, for the abnormal case where the buoyancy forces are strongly stabilizing, the original direction of motion of

an eddy may be reversed. This reversal might happen because the buoyancy force, in the stabilizing case, acts in the direction

opposite to that in which the eddy starts to move. Possible paths for the eddy on the distance-temperature or distance-velocity plane
under these conditions are sketched on the fight side of figure 5-101. As shown, the eddy path can cross the mean temperature or

velocity line. As the eddy mixes with the fluid, it will then tend to increase the mean temperature and velocity gradients, and thus
the effective eddy conductivity and viscosity will be negative. The actual mechanism may be more complicated than that considered

here. The preceding explanation is given only to show that negative eddy conductivities and viscosities are physically reasonable.
The turbulent heat transfer and shear stress do not necessarily change sign at the same value of dimensionless g, since the eddy paths

on the distance-temperature plane and on the distance-velocity plane may be different because of differences between the conduction

and viscous effects on the eddy as it moves. Comparison of figures 5-99 and 5-100 shows that the turbulent shear stress changes

sign first as dimensionless g increases.
The ratio of eddy conductivity to eddy viscosity plotted against dimensionless g is shown in figure 5-102. The eddy

conductivity and eddy viscosity are defined by the relations

m

't'u 3
£h =

dT/dx 3

UlU3
E=

dUlldx 3

For small values of shear parameter, 8h/8 decreases with increasing buoyancy parameter except for large buoyancy. For a shear

parameter of 4, _/sincreases with increasing dimensionless g. The sharp increases in eh/e near the ends of the curves occur because

the eddy viscosity approaches zero and changes sign near those points.

Values of the correlation coefficient _ll/ L_X J _Ul J j are presented in figure 5-103. The correlation xu 1 is

proportional to turbulent heat transfer in the x l-direction- The fact that there should be heat transfer in the x !-direction is surprising

since there is a temperature gradient only in the x3-direction. It appears, however, that "cu--1can be nonzero because of the nonzero

values of xu'-'_and ulu-'-_. Since there is a correlation between x and u3 and between u3 and ul, the fact that a correlation should

occur between x and q seems reasonable. It must be admitted, though, that heat transfer in a direction of zero temperature gradient

runs contrary to normal intuition. It should be noted that the effect is not dependent on the presence of buoyancy forces (i.e.,

dimensionless g can be zero). The turbulent heat transfer in the xrdirection is not necessarily small compared with that in the x3-

direction. Figure 5-104, which shows plotted values of -%u3/_11, indicates that the turbulent heat transfer in the two directions

can be of the same order of magnitude, even though the temperature gradient in the xrdirection is zero.

Comparison of the present analytical results with available experimental data is of interest in order to see if there is a

correspondence. Experimental data for grid-generated turbulence in the presence of combined buoyancy and shear are given in
reference 116. Unfortunately, it is hard to estimate the values of the shear parameter (t- to) dU1/dx3 in the experiments because of

uncertainties in the initial and other conditions. A comparison between analysis and data for u32_ at station 5 in reference 116

is plotted in figure 5-105. For a shear parameter of 2 the trend with Richardson number for the data appears to correspond with that

for the analysis.
Growth due to buoyancy of turbulence with shear. So far we have not considered the question of whether or not,

according to our analysis, turbulence with combined buoyancy and shear ultimately decays with time; the dimensionless parameters

plotted in figures 5-92 to 5-105 do not provide that information.
Studies of homogeneous turbulence with uniform mean shear for which mean gradients are large enough, or the turbulence

weak enough, to neglect terms containing triple correlations are described in section 5.4.2.1 (see figs. 5-54 to 5-68). In the results
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obtained there, the turbulent energy ultimately decayed with time. The energy produced by the mean velocity gradient was less than

that dissipated. In figures 5-67 and 5-68 where the initial condition was modified to give a finite initial turbulent energy, the energy
sometimes increased for a while, but it still ultimately decayed. This behavior was attributed to the fact that while the total energy

was increasing, energy was being drained out of the component of the turbulence in the direction of the velocity gradient by the

pressure-velocity correlation terms associated with the mean shear. Since there was no turbulence production in that component,

it quickly decayed, with the result that the turbulent shear stress, and consequently the turbulence production in all the components,

ultimately decreased.

Thus the key to obtaining a nondecaying turbulent shear stress flow appears to lie in keeping the energy from being drained

out of the turbulence component in the direction of the mean velocity gradient. In turbulence where the nonlinear terms are important,

the distribution of energy among the directional components is evidently accomplished by the pressure-velocity correlations, but

in our case those correlations generally tend to make the turbulence more anisotropic. If, however, we superimpose on the shear

flow destabilizing buoyancy forces in the direction of the mean velocity gradient, it may be possible to obtain a nondecaying solution
for our turbulence. Those buoyancy forces should tend to prevent the turbulence component in the direction of the mean velocity

gradient from decaying, as in figure 5-84 where mean shear was absent. It will be shown that although our turbulence with mean

shear ultimately decays when buoyancy is absent, the presence of destabilizing buoyancy counteracts the decay, and the turbulence

grows at large times (ref. 117).

In this section we use for the initial q_j, the relation for isotropic turbulence given by equation (5-349):

((i)iJ)o = J0 {8.._c2_lcilcj)e-X _/_20 (5-349)
12rc2 I, ij

where Jo is again a constant that depends on initial conditions, and r,,0is an initial wavenumber that is characteristic of the turbulence.

Except for the use of equation (5-349) for (quij)0 in place of equation (5-333), the calculations in this section are done in the same

way as those already given for combined shear and buoyancy. The two expressions for (_j)0 differ only by an exponential, and are
identical for w.0= .o. It is, of course, again assumed that _ and (?t)0 are zero. That is, as before, the turbulence producer (grid) is

assumed to be unheated, so that the temperature fluctuations at later times are produced entirely by the interactions of the mean

temperature gradient with the turbulence.

The effect of destabilizing buoyancy forces (vertical temperature gradient, negative) on weak homogeneous shear-flow

turbulence in a gas is illustrated in figure 5-106. The superscript (a) on u_j (a) and lcC0a) indicates that those parameters have been

made dimensionless by using quantities related to the shear (in contrast to those related to the buoyancy, which will be used later).

Curves are shown for two values of Richardson number Ri and of the initial wavenumber parameter.

The curves indicate that for a Richardson number of 0 (no buoyancy effects) all components of the turbulent energy

(a) ndecrease with time. The turbulent shear stress -UlU 3 alsodecreases with time, exceptneartheinitialtime.(Al t = 0 theturbule ce

is isotropic and UlU 3 is 0.)

The decay of the components of turbulent energy for no buoyancy effects evidently occurs mainly because there is no

production term in the equation for u3u 3 (component in the direction of the mean velocity gradient). This can be seen by letting

i =j = 3 in equation (5-448), in which case the production term (second term on the fight side) drops out. In addition, the pressure-

velocity correlation term in equation (5-448) (third term on the fight side) tends to drain energy out of the u32 -component, as

discussed in section 5.4.2.1. As a result the _'_ -component decay s rapidly compared with the other components, which have energy
m

fed into them by the mean velocity gradient or by the pressure-velocity correlations (see fig. 5-106). When u ] decays, the shear

component u3u ! must also decay. There is then no mechanism for maintaining the turbulence since that maintenance apparently

takes place as a result of work done on the turbulent shear stress by the velocity gradient (see second term on fight side of equation

(5-448)). All of the turbulence components must then decay.

By contrast, for Ri =-1 (buoyancy forces destabilizing), all components of the turbulent energy decay for a while and then
begin to increase without limit as time becomes large. This increase evidently occurs because the vertical buoyancy forces excite

the u2 -component of the turbulence and replenish the energy being drained out of it.

It might seem surprising that all components of the turbulence continue to increase with time rather than level off. There

are no boundaries on the flow considered here, however, so that the effective Reynolds number and Rayleigh number of the mean

flow are infinite. As the scale or mixing length of the turbulence continues to grow, the eddies encounter larger and larger velocity

and temperature differences, so that the effective driving forces on the turbulence continue to grow.
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Comparisonoffigures5-106(a)and(b)shows,asexpectedthatfor 1¢_0a)= oo (all wavenumbers present), the components

of the initial energy are infinite, whereas for g(0a) = 1 they have a finite value. The turbulent shear stress - u 3ul starts at zero on both

plots since the turbulent shear stress for isotropic turbulence is zero. For the case of 1¢(0a) = *_,however, the value of- _ jumps

to infinity in an infinitely short time and then decreases. For 1¢C0a) = 1, - u3u 1 first increases steadily and then either decreases (Ri

= 0) or continues to increase (Ri = -1).

To give an idea of the distribution of the turbulent energy with wavenumber, energy spectra (spectra of uiu i ) are plotted

in figure 5-107 for !¢(0a) = _ and Ri = 0 and 1. For t(a) = 0, _lliiis proportional to _ (equation (5-349)). As time increases, the spectra

move to the small wavenumber regions; that is, the scale of the turbulence grows indefinitely large with time, since the fluid is

unbounded.
Thus far we have been considering the effect of buoyancy on a shear-flow turbulence. Next we want to consider the related

problem of the effect of imposing a mean shear on turbulence that is buoyancy-controlled. For doing this it is convenient to use the

,-_2 (b) ,(b) ,,.(b) _-(b) _-?"-(b)
parameters u i .... 0 , _ , _u3 , which have been made dimensionless by using quantities related to the buoyancy (see

fig. 5-108 and 5-109). The parameters used in figures 5-106 and 5-107 were, on the other hand, nondimensionalized by using

quantifies related to the shear.

__-_(b) -_-(b)
Theeffectsofshearonbuoyancy-controlledturbulenceareillustratedin figures 5-108 and5-109, where ui , x ,and

_33 O) are plotted against t (b) for several values of Richardson number and I¢(0b). For the case of no shear (Ri = -..oo) the results

were obtained from the integrated equations in section 5.4.2.4. All components of the turbulent energy, as well as the temperature

fluctuations and the temperature-velocity correlations, increase as t(b) becomes large. This occurs even when shear is absent and

the turbulence is completely controlled by the destabilizing buoyancy forces (Ri =--_). Although all turbulent energy components

can increase with time when shear is absent, the component in the direction of the buoyancy forces is, in that case, at least an order

of magnitude greater than the other components. On the other hand when both buoyancy and shear are present, all components can

be of the same order of magnitude.

As the shear increases (as Ri goes from --_ to-2), the turbulent activity in general increases, at least at the earlier times.

The shear does not seem to affect x"_'(b) or xu----3(b) at the smaller times when !¢(0b) = 1, however. At larger times, although u 2 and

5u_ increase with increasing shear, u], x2 and _33 all decrease with increasing shear.__These decreases appear to be related to

the fact that at large times the presence of the shear causes energy to be drained out of the u2 component (as discussed earlier), and

thus out of xu"--3and x2 (see eqs. (5-449) and (5-450)).

Summary of results for combined buoyancy and shear. The results for combined effects of vertical buoyancy forces
and vertical velocity gradients indicate that, as in the case of no shear, destabilizing buoyancy forces can feed energy or activity into

a turbulent field whereas stabilizing buoyancy forces can extract it. The effect of the shear is to feed energy or activity into the

turbulent field. Thus for the destabilizing case, the buoyancy and shear have similar effects; but for the stabilizing case, they work

in opposite directions.
Energy or activity transfer between wavenumbers by the stretching of turbulent vortex filaments by the mean velocity

gradient causes the spectra to become asymmetric; the slopes on the high-wavenumber sides of the spectra become more gradual.
For the destabilizing case, buoyancy forces tend to increase the vertical turbulence component in comparison to the

horizontal component in the flow direction while the shear tends to decrease it. For weakly stabilizing conditions both the buoyancy
and shear tend to decrease the ratio of vertical to horizontal turbulence components. For more strongly stabilizing conditions, the

trends become less well defined.
The shear tends to align the turbulent vorticity in the direction of maximum mean strain, which is 45 ° from the flow

direction. Destabilizing buoyancy forces tend to align the vorticity in horizontal directions whereas stabilizing forces tend to align

it vertically.
Some deductions from our analysis appear at first sight to be counter-intuitive. When buoyancy forces are strongly

stabilizing, the eddy conductivity and viscosity can be negative. This result appears reasonable when considered from the standpoint

of a modified mixing length theory. Also, turbulent heat transfer can occur in a horizontal as well as a vertical direction, even though

the velocity and temperature gradients are both vertical. This latter effect is not dependent on the presence of buoyancy forces.

Uniformly sheared turbulence which is weak, or for which the mean velocity gradient is large, ultimately decays with time

(see section 5.4.2.1). However, the presence of destabilizing buoyancy forces in the direction of the mean velocity gradient can
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prevent that decay. In that case the buoyancy forces replenish the energy being drained out of the component of the turbulence in

the direction of the mean velocity gradient by the shearing deformation, and the turbulent energy increases without limit as time

increases. Apparently the energy can increase without limit because the effective Reynolds and Rayleigh numbers are infinite in

an unbounded fluid. As the scale or mixing length of the turbulence continues to grow, the eddies encounter larger and larger velocity
and temperature differences, so that the effective driving forces acting on the turbulence continue to grow.

So far we have not considered the effects of normal strain on turbulence. That will be done in the next sections.

5.4.2.6 Turbulence in an idealized flow through a cone.mWhen fluid flows axially through a section of a cone, the fluid

elements are distorted because of the changing cross sectional area of the flow. If turbulence is initially present, it is modified by

this distortion of the fluid. The interaction between turbulence and an idealized distorting mean flow in a cone is studied in this

section. Flow in a cone is of particular interest because wind tunnels and rocket nozzles frequently contain conical, sections.

The effect of an irrotational distortion (no shear) on turbulence has been studied in references 118 to 121. In those studies

the effects of viscosity were neglected and the distortion was assumed to occur so rapidly that the turbulent velocities have a

negligible effect on the motion during distortion. The present work is more closely related to that of Pearson (ref. 78). In his work

the effects of viscosity are included and the requirement that the distortion be rapid is not imposed. If the distortion is not rapid,
however, the turbulence must be weak enough to neglect terms containing triple correlations in comparison to other terms in the

equations. Pearson's analysis assumes that the normal velocity gradients are uniform and that the turbulence is homogeneous.

The present analysis of turbulence in incompressible idealized flow through a cone (ref. 122) uses generalized two-point

correlation equations that are based on the Navier-Stokes and continuity equations (see equations (4-145) to (4-150)). The normal

velocity gradients OUl/0X I, OU2/Ox2, and OUa/0x 3 are allowed to vary axially but not transversely. The turbulence is assumed to

be homogeneous in the transverse direction but only locally homogeneous in the axial direction. That is, the variation in intensity

of the turbulence over a correlation (or mixing) length in the axial direction is assumed to be small. The mean axial velocity is

assumed uniform over a cross section, and mean shear stresses are assumed alasent. The turbulence is initially isotropic but is allowed

to become anisotropic under the distorting influence of the mean flow. Components of the turbulent velocity and vorticity variances

are calculated, as well as components of the spectra of those quantities. A mean-strain energy-transfer term in the spectral equation

which transfers energy components between wavenurnbers is also considered. By using the momentum-heat-transfer analogy, the
results are related to heat transfer between the fluid and the cone wall.

General two-point correlation equations for turbulence in an incompressible fluid with mean velocity gradients are

obtained in section 4.3.4 from the Navier-Stokes and continuity equations as follows:

_ , ,OU i --_U' _ +2(Uk .,_ _9 ,
..... , J + t'Tr,
_)t U,Uj + Uknj _'_k + UiUk O--_k [Ok -Vk) UiUj +Uk) _--_k)m UiUj + 2 O(Xk) m

(,,uiuju k + UiUkU

_ / "' uiu ku_)
 uiujuk- = .... Ouj+_uio +_uiO -- +

p 12 L_(xi)m _(Xj)m J _lrj _-_i _'_ _v _(Xk)m_(Xk) m

(5 - 483)

_2U-_ ,auiu l Oq2UiUiUk

_(Xj)mC3rj Orj_rjJ=-2 _--"_k[2. °3uiuk ",-_j-14-_ _(Xj)r a t)rj 4 _(Xj)m_(Xk) m

l _2 UiUiUk

2 O(Xj)m_r k

1 t)2 UiUjUk t)2 U---i'i'i_iUk

2 2(x k)m ch'j 0rjt)r k '
(5-484)
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and

LZa(Xi)ma(Xi)m a(Xi)mari 4-aria----_-ij =- aT L ar,j 4 m

1 O2UiUkUi
÷

2 a(Xi)m rk

1 O2UiUkUi _2 Ui-_Ui
.¢ (5-485)

2 O(Xk)m_r i _riOrk

The above equations are obtained from those in section 4.3.4, where 0 < n ___1, by setting the constant n equal to 1/2 and replacing

the subscript n by m. Then the vector configuration in figure 4-17 becomes that in figure 5-110. The quantities ui and u i are

fluctuating velocity components at P and P', Ui and U i are mean velocity components, xi is a space coordinate, t is the time,

p is the density, v is the kinematic viscosity, and ¢ris the instantaneous (mechanical) pressure. Bars over terms designate correlations

or averaged quantities. The subscripts can take on the values 1, 2, or 3, and a repeated subscript in a term indicates a summation.
For locally homogeneous turbulence the turbulence is considered homogeneous over a correlation length, or the scale of

the inhomogeneity is much greater than the scale of the turbulence. Thus, a quantity such as _2u_/_(Xl0m O(Xk)m in

equation (5-483) will be negligible compared with 32 u_/_r k Ork. (A calculation for axially decaying turbulence without mean

velocity gradients (ref. 7, fig. 3) shows that this is a good approximation except very close to the virtual origin of the turbulence.)

In general, for locally homogenous turbulence,

<<
 (Xi)m

Also, for that type of turbulence the mean velocity will vary linearly over distances for which correlations are appreciable so that

_U i _Uj _(Uj) m rl_(Uk)m (Uk + Uk) = (Uk)m.
_X---_k= _X----_=_(Xk)m, U_-U k = _(Xl)m , 2

Finally, in order to make the set of equations determinate, the turbulence is assumed weak enough to neglect terms containing triple

correlations. It should again be noted that, as the turbulence in a flow with large velocity gradients may not have to be as weak as

that in a flow without velocity gradients. The terms containing those gradients may be large compared with triple correlation terms,

even if the turbulence is moderately strong. Equations (5-483) to (5-485) become, for the steady state at a fixed point,

-----;- _(Oj)m _(Uk)rn _ ----_- _ , = _ ! (_ u---i'i'__ L _I + 2V _2 u_

l'UiUk _--_k_m' 3(Xt)m rt_k'k uiuj+(Uk)m _(Xk)m uiuj PL _rj _ri J) _rk_rk '

(5 -486)

and

1 _2U-_ =_2_(Uj)m _tliUk

p _l'j _l'j _(Xk) m _rj

1 =2 aUkUi
I3 _ri_ri _(Xk)rn _ri

(5 - 487)

(5 - 488)
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Equations (5-486) to (5-488) are the correlation equations for steady-state locally homogeneous turbulence with mean

velocity gradients. The equations can be converted to spectral form by using the usual three-dimensional Fourier transforms already

defined in equations (5-304) to (5-306):

uiu--q(r)= (5- 3o4)

ou-"_= _ _jei='rd)¢, (5- 305)

_, ig.r-UiG' = _,ie tiC, (5-306)

where dg = d_l d_2 dK3. Then,

t)UiUj_ _q)ij +_ .... eilC.rdK,
re_- - _k0K t oekvlj

(5 -- 489)

where 6ek is the Kronecker delta. Equation (5-489) can be obtained by differentiating equation (5-304) with respect to rk, writing

the inverse transform, and then differentiating with respect to _. Taking the Fourier transforms of equations (5-486) to (5-488)
results in

t)(Ui)m

% O(Xk)m t)(Uj)m _(Uk)m (Kk _ + _t,k(Pij)+ (Uk)m _
I'_ik _(Xk)m _(X,) m 0( xk)m q)ij = i_j_i (5- 490)

_(Ut) m l_eKj- iKj_._=20(Xk)m 1(2 _Oik'

(5-491)

piKi_j ^0(Ul) m KiKi=Z_--_k)m K2 (Pjk"
(5 - 492)

Combining equations (5-490) to (5-492) and noting that 5ek OUe/0Xk = OUef0xe = 0 by continuity result in

_(U<) m [¢21(,Kj __j,)_oi k f K,I(: i - _ _Pij]= +t27-_itJ_kj+K, _K k J 2VI(21PiJ"(Uk) m _(Xk)m q)ij Lt7 (5- 493)

Equation (5-493) is the spectral equation for steady-state locally homogeneous turbulence which is weak or for which mean

velocity gradients are large.
Consider next the case where the mean strain is irrotational, that is, where the shearing components of the mean velocity

gradient are zero. If we let

_(UI) m _(U2) m _(U3) m

all = _(Xl)m ,a22 = _(X2)m ,a33 m _(X3)m ,
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Equation(5-493) becomes, for irrotational strain,

=a(tt)[[ 2--_--[(KtKj _Sit]_0jt+(2KtKj "_ +_ _ij](Uk) m _(Xk)m (Pij "'_---_jt](P£i _t 0"_"t] 2VK2(Pij '

(5 - 494)

where (tt) is not strictly a tensor subscript. For axisymmetric strain at each point in a cross section, as occurs in uniform flow through

a cone, a22 = a33, and by continuity of the mean flow,

1 (5-495)
a22 =a33 =-_all.

The subscript 1 refers to the direction of an axis of symmetry for the turbulence. Since all = f(x 1), integration of equation (5-495)

gives U2 =--(1/2) all x2 and U3 =--(1/2) al I x 3or for circular cross section, the radial velocity Ur = (1/2) al I r. In addition, it is assumed
that the turbulence is homogeneous over a cross section of the flow and that the turbulence changes only in the axial or Xl direction,

so that

O(Pij =(Ul)m Oq0ij
(Uk)m O(Xk) m O(Xl) m "

(5 - 496)

To simplify the notation, let (Ul)m-=U, (x 1)m -=x, and al 1-a in the remainder of this section. Then for (Pl I equation (5-494) becomes

U O_Pl_I-_ _011+IK 0_PlI+IK _Pll-tPlI/6_2 2- ],a Ox _1 01el 2 2 01_2 2 3"_-K3 - -- ? 1_2
(5 - 497)

where use was made of the continuity relation in the form K2 (PI24- 1c3 1P13 = -1_1 _11.. Similarly, for (Pii,

U 0q)ii O(Dii 1 0(pii . 1 3_(pii = -3% 1 + (Pii -- 2 v K2tPii (5 - 498)

Next we determine U and a as functions of x for flow through a cone of arbitrary cross section. With the aid of the

diagram in figure 5-111 these are obtained as

1U=U 0 1+ tana = ,
X 2 tan 2 (z

(5 - 499)

where

12U o tanaa= l+ tana = ,
r0 X 3 tan 2 a

(5- 5oo)

X-x_x0 + r0 =_2 U. (5-501)
tan(_ a

Then equations (5-497) and (5-498) become

2vtan2UOr2 ccX3ic2)_pl iX__+2KIO(PlI_K2 o(pll 1¢3_011 --( 12 1¢2
_ICI _1_'---'_- -_3- _-IC2+4

(5 - 502)
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and

(5- 503)

Equations (5-502) and (5-503) apply to either diverging or converging flow through a cone, depending on whether ot is positive or
negative.

Before equations (5-502) and (5-503) can be solved in an initial value problem, the turbulence must, of course, be specified
at an initial position. It is assumed that the turbulence is isotropic at x = x0, the virtual origin of the turbulence (or at X = Xo =

ro/tan t_, by equation (5-501), and that, as in previous sections, (gij)0 is given by equation (5-333):

= Jo '12x2 _ ij
(5- 333)

where J0 is a constant. Equation (5-333) gives results that, at all values of x, reduce to those for isotropic turbulence as the mean

strain goes to zero. The use of that initial condition implies that Pearson's parameter x =v _ / a approaches **, where r0 is a

characteristic initial wavenumber of the turbulence (ref. 78). Thus, the present results should be applicable for large kinematic
viscosity, small initial turbulence scale, or small strain rate. The case x _ **was not considered by Pearson.

Equations (5-502) and (5-503) are fast-order partial differential equations in four independent variables and can be solved
by methods similar to those given in reference 79. Solutions of these equations inrescaled (dimensionless) form, subject to the initial
condition given in equation (5-333), are

and

where

911 =l-_g2 X6(K22+K32)_4(X-'6K2+K2+K2) 2ez

)¢2 1 X 6 (2X...61¢12+1¢2 +!¢2Xx... 6 +)¢2 +!¢2 +_:32)ez,9ii = -- ."_- 911 +
K! 121t2 g 2

(5 - 504)

(5-505)

-2x2 '4 xt(x_l)" z, (5- 506)

__X = 1+(x- x0) tans --_ X, (5-507)
X0 r0

(5 - 508)

x - x 0)v

JoU0 _i i _ 9ij, (5 -- 509)

and the arrows _ are read "has been replaced by." It isof interest that 911 and 9ii are functions only of (x- xo) tan offroand rq. Because
of axial symmetry it is not necessary to obtain equations for 922 and 933.

In order to integrate over wavenumber space, it is convenient to introduce spherical coordinates as follows:

K 1 = KCOS0, K2 = Kcosgsin0, _3 = rsingsin0. (5 - 510)
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Equation (5-304) then becomes, for r = 0

where

u_ = i Vii dK:,

n 2n

_l/ij = f fcPij K2 sin0dcP d0"

0 0

(5-511)

(5-512)

The quantity _ij is a function only of the magnitude of the wavenumber _:and represents an energy-spectrum tensor which

has been integrated over all directions in wavenumber space.

The velocity variances u_, uiu i , u22, and u32 are calculated from equations (5-504) to (5-512) as

1{ 1 124.v_X''-----_ 23/2_hg 1/2 h _._fff..) 25/2X5(l+h) 1/2 Zfi + ._+_ .j

3(1-4X6 + 3X12)15(1 - 2X6 + X'2) (-_-X fl/2 + B)}, (5-513)
-+ H+

4X4h 2 8X6h 3

UiU i =

73/2 /" X 1 "_1/212 X 6 X 12

[ -z:-i

[x(,.x°)(_._) _.x,__xl_ _(a-x_)_1
XI _--_._1+_ , 2512X5h(l+h)l12 _ -4X_fi 2 H,

(5 - 514)

where

u 2 =u32 = lluiu-'-"i'-'_12),

x -- x0)5/2 V5/2

JoUSot2 uiuj

(5-515)

(5-516)

-6X 7 + 7X 6 - 1

7X6(X_ 1) '
(5-517)

X 7 - 1

f = 7X6(X - 1)'
(5-518)
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(5-519)

for h> 0,

for h>0,

(5-520)

Then the vorticity tensor is given by

x2_

Aij= I I "ijl_2 sin0dcpd0.
00

7
¢oio3j = J Aij d_. (5 - 522)

0

One other quantity of considerable interest is the transfer term in equation (5-490),

_(Uk)m [1Ck _iJ + 5tklPij] = _ij. (5-- 523) (xt)m

This term is, of course, nonzero only in the presence of mean strain. The term was previously discussed in section 5.4.2.1 for the

case of a shear flow. That it can be interpreted as a transfer term can be seen from equation (5-489), where, if we let r = 0, we get

il 0¢PiJ "_ .... ] d_:= 0. (5-524)
ICk_K-----_-,'vAWtj)

That is, when the term is integrated over all-wavenumber space it gives zero contribution to the rate of change of u iuj. (The quantity

(Uk)m 0 u iuj/O(Xk)m in equation (5-486) can be interpreted as a rate of change.) The term I_ijcan, however, transfer energy between

wavenumbers. Evidently the transfer takes place by the stretching or compressing of the vortex lines associated with the turbulence

112

(5 - 348)

(5-521)

By analogy with equation (5-512) a directionally integrated vorticity spectrum tensor can be defined as

f_ij = (_ij K2 -- 1CiKj)(Ptt -- K2(Pij •

where X has been rescaled by using equation (5-507).

Animportantphysicalquantityrelatedtotheturbulenceisthe vorticitytensor fOi_ j .The vorticity spectrum tensor is given

by equation (5-348):



bytheme:mstrain. This transfer is similar to that produced by triple correlations, except that in that case the stretching or compressing

of the vortex lines is accomplished by the action of the turbulence on itself, rather than by a mean strain. For the present case of axially

symmetric irrotational strain, equation (5-523) becomes, for i =j =1,

3tpl I 1 3t011 1 _)g_ll_,_1, =a _:1 0_Cl 2_:2 _K:'_---_'K3-_3 j
(5 - 525)

where 911 is obtained from equation (5-504). As in the case of t0ij (eq. (5-512)), _ij can be integrated over all directions in

wavenumber space to give

2n

Tij = _ _ 13ijr2 sin0dt0d0. (5- 526)
00

Computed velocity variances, vorticities, and spectra will be discussed next.

Turbulent velocity variances u2 , u2, and u2, calculated using equations (5-513) to (5-515), are plotted in dimensionless

form in figure 5-112. Also included is the curve obtained by solving equation (5-502) as though the effects of strain were absent

by omitting the transfer, pressure and production terms (terms 2 to 6). The resulting equation is

u, _ 3____.ix 3 -5,2
IU0tanal 5-0-0- 1642_/3' -1 ,

(5 - 527)

where equation (5-507) is again used to rescale X. Negative values of x', the abscissa, correspond to a converging flow and positive

values to a diverging flow. The virtual origin of the turbulence (x' =0) is the point at which the energy of the turbulence would be

infinite.

In a converging flow, velocity fluctuations first decrease as one moves from the virtual origin toward the apex of the cone
because of viscous dissipation. The distorting influence of the cone causes the longitudinal components to decrease more rapidly

and the transverse components to decrease less rapidly than they would without the effects of strain. As the apex of the cone is

approached, the longitudinal component continues to decrease rapidly toward zero. The transverse components, on the other hand,

begin to increase as the effects of strain become greater than the effects of viscous dissipation. From equation (5-500) it can be seen
that the strain rate increases rapidly as the apex is approached. At the apex, where the mean velocity and strain rate approach infinity,

the transverse velocity fluctuations would also become infinite. In practice, of course, the tip of the cone must be removed in order
to allow flow. It is of interest that this increase in transverse turbulent velocity component with mean velocity or contraction ratio

at large velocity ratios was not observed in reference 78, where the velocity gradients were uniform.
For a diverging flow in a cone (positive x') the effects of strain are opposite to those for a converging flow. The longitudinal

component decreases less rapidly than it would for no strain. Although the effect of strain is to increase the longitudinal component,
that component continues to decrease as x' increases because, as shown in equation (5-500), the strain rate decreases with x'. That

is, the effect of viscous decay in this case is greater than the effect of strain.
Trends similar to those shown in figure 5-512 for converging flow have been observed experimentally in references 123

and 124. A comparison between the present analysis and experimental results from reference 123 for a 4-to-1 contraction is given

in figure 5-113. The subscript a refers to conditions upstream of the contraction at the point where the mean velocity begins to vary.

(It should be noted that the contraction in the experiment was evidently not a true cone). Values of U/Ua at the minimum point for

the analytical curves were obtained by assuming that the value of U/Ua at the minimum point in the analytical curve for the transverse

component (i = 2) corresponds to the value of U/Ua at the minimum point in the experimental curve for the same component. The

overall change in the turbulent components produced by the contraction appears to be given reasonably well by the analysis, but

the minimum in the experiment for i = 2 is sharper than that in the corresponding analytical curve.

To explain the trends shown in figure 5-112, turbulent vorticity variances are plotted in figure 5-114. The dashed curves

in the figure, for no effects of strain, were obtained from the equation

7/2
v r0 co1 45 -7/2J0 'U0 tan(x

(5 - 528)
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where, as before, equation (5-507) is used to rescale X. In general, thetrends for the vorticity components are opposite to those for
the velocities. For a converging flow, the longitudinal vortices are stretched and thus strengthened by the accelerating flow and the
transverse vortices are shortened along their axes and are thus weakened. The straining action also tends to turn the axes of the
oblique vortices and to align them in the direction of the cone axis. Both of these effects tend to increase the longitudinal vorticity
component and decrease the transverse components, as shown in figure 5-114. The opposite trends occur for a diverging flow; the
strain in that case tends to decrease the longitudinal vorticity component and to increase the transverse components.

The relation of the vorticity to the fluctuating velocity components for a contracting flow has been pointed out by Prandtl
(ref. 118) and Taylor (ref. 119). When the vortex axes lie predominately in the direction of the mean flow, the longitudinal velocity
fluctuations are small, whereas the transverse velocity fluctuations can be large. The opposite effects occur for a diverging flow.

 o,oi,, owevo,,an mpor tOiffo oco two  gu,o and
are plotted against U/Uo. (The relation between this abscissa and the one in the preceding plots is given by equation (5-499).

,ozeroas  oe,to  oraoonv r n  ow, o  o ito for a
2 _ 2diverging flow; that is, u I _ does not go to infinity as coI _22 goes to zero but approaches a limiting value of 5. This occurs

in the diverging flow because transverse as well as longitudinal velocity fluctuations are present when the vortex axes are aligned
transversely, while in converging flow, the longitudinal velocity fluctuations approach zero as the vortex axes become aligned

Included in the plot (fig. 5-115) for comparison is the curve for u_u2_ for a sudden contraction withoutlongitudinally. viscosity
as obtained from reference 121.

Relative intensity ratios for turbulent components corrected to eliminate decay are plotted in figure 5-116. To obtain
the ordinates in this figure, the ordinates for the solid curves in figure 5-112 were corrected for decay (as indicated by the
subscript c) by dividing them by the ordinates for the dashed curves, which are for a pure viscous decay. (The subscript w means
without the effects of strain.) The result, after the square root has been extracted, is divided by U/U0 to give intensity ratios relative
to the local mean velocity. Curves obtained from reference 121 for a sudden contraction and no viscosity are included in the plot
in figure 5-116 and are similar to those for analysis.

The curve in figure 5-116 for {(u-_l / 2/U)/[(u-_l / 2)0/U0 ]}c can be relatedapproximately to the heat transfer between

a cone wall and a fluid, which occurs, for instance, in a cooled rocket nozzle. The comparison is made by using the following
argument, which is based on the momentum-heat transfer analogy: Except very close to the wall, the turbulent heat transfer is large

compared with the molecular heat transfer, so that the total radialheat flow perunit area q is approximately pcp _ dT/dr. The radial
temperature gradient dT/dr at a particularradius is assumed proportional to AT/_;,where _;is the boundary layer thickness. The eddy
diffusivity _ is replaced by the product of a transverse velocity fluctuation and a mixing length which is assumed proportional to

8,sothat _ ~ _1/2 8. Tbenthe beat-transfercoefficient h--q/AT ~p cp uTl/2,ortheStantonnumber St-- h/(p U cp)~ u-_l/2/-U.

We assume that the change in turbulent intensity along the cone in the boundary layer isdetermined primarily by the normal
strain rather than by the shear, as it might be when the strain is very rapid. (The initial turbulent intensity in the boundary layer at
theentrance of the cone would, of course, bedetermined bythe shear in the upstreamboundary layer.) By using the preceding relation
for Stanton number, we can then replace the ordinate of the curve for i -- 2 in figure 5-116 by St/St0. That curve, which has been
corrected to eliminate viscous decay, is used because the inhomogeneous shear that occurs in a boundary layer will normally offset
the viscous decay. The curve, replotted in figure 5-117, shows that 8tanton number decreases rapidly along a converging cone. If,
by contrast, the Stanton number is calculated from local conditions in a boundary layer without considering normal strain, the
decrease is much more gradual. In that case the Stanton number is roughly proportional to (p U D)-°'2 (assuming that 8 ~ D), and

St ----(1 + X') 0"2. (5 -- 529)
St 0

The curve for equation (5-529) is the dashed curve in figure 5-117.
The heat transfer in the boundary layer of a rocket nozzle may, of course be more complicated than the case considered

herein, where changes are assumed governed by the normal strain. The effects of sbear and variable properties, as well as of normal
strain, may not be negligible. However, experimental data for heat transfer in cooled conical nozzles (refs. 125 to 127) indicate trends
very similar to those obtained herein. Data from references 125 and 126 for M < 0.2 in the conical portions of two nozzles are plotted
in figure 5-117. Comparison of the data with the solid and dashed curves seems to indicate that changes in the Stanton numbers along
the cone are more dependent on the normal strain than on the shear in the boundary layer. For plotting the data, it was assumed that
the entrance of the cone corresponds to x' = 0. Although there is some uncertainty as to the point in the analysis which corresponds
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to the entrance of the cone in the experiment, it turns out that the results are insensitive to the point chosen. If, for instance, we chose

x' = --0.5 instead of x" = 0 as the starting point, the results would be nearly identical.

Spectra of u 2 and u2 are plotted in figures 5-118 and 5-119 and show how contributions to u 2 and u2 are distributed

among dimensionless wavenumbers (or reciprocal eddy sizes). Plotted in this way the curve for no convergence or divergence

(x" = 0) does not change with x. Thus, comparison of the curves for various values of x" with the curve for x" = 0 shows how

convergence or divergence affects the spectrum at a given position in comparison with the spectrum at the same position with no

strain. For converging flow (negative x') the contributions to u7 occur at smaller wavenumbers (larger eddies) than they would for

no convergence, whereas contributions to u-'_move to higher wavenumbers. For diverging flow, by contrast, both X_lI and _22 move

to lower wavenumbers than they would for no divergence.

Of some theoretical interest is the extreme asymmetry of the spectrum of u 2 for negatively large x'. This effect has been

observed previously (section 5.4.2.1), but it is much more pronounced here, possibly because the strain rate increases sharply as

x" becomes more negative. As in the previous cases the asymmetry is associated with a spectral transfer term that depends on the
mean strain rate. That the effect is associated with a transfer term (eq. (5-526)) was verified by solving the spectral equation with

the transfer term omitted. The spectrum obtained was found to be nearly symmetrical.

A plot of the dimensionless transfer term associated with the mean strain is given in figure 5-120. The net area under each

curve is zero, in agreement with equation (5-524). The curve for negative x' is predominately negative at low wavenumbers and

positive at higher ones, so that energy is in general transferred from low wavenumbers to higher ones. The curve also indicates that
a small amount of reverse transfer to low wavenumbers takes place in the very low wavenumber region.

The fact that the energy transfer in the longitudinal component of the turbulence is__primarily from low to high wavenumbers

is possibly surprising, since according to a simplified theory one might assume that the u2 component is produced by vortices that

are aligned transversely. The axes of those vortices would tend to be shortened in a converging flow. However,__ the proportion of

vortices aligned in the transverse direction is small in a converging flow. Most of the contribution to u 2 probably comes from

oblique vortices, and in those vortices the energy transfer can be in the direction indicated in figure 5-120. For diverging flow

(positive x') the energy transfer is in the opposite direction, that is, from high to low wavenumbers. In that case the effect of the energy

transfer on the shape of the ul2 spectrum seems to be small.
For the converging case, figure 5-120 shows that the positive area in the high wavenumber region is spread out over a wide

range of wavenumbers. As x' becomes more negative this range widens still more. This elongated positive area of energy transfer

is responsible for the long tail on the spectrum of u7. To carry the effect to the extreme, the energy spectrum of dimensinless u2

for x" = - 0.99 is plotted semilogarithmically in figure 5-121. Included also in the plot is the dissipation spectrum, which is

proportional for K2 VI 1- The energy and dissipation regions in this case show essentially complete separation and are separated by

a pseudo-inertial subrange in which energy transfer is the dominating process. This inertial subrange is termed pseudo because it
occurs only in one component of the turbulence and because it is produced by inertial effects associated with the mean strain rather

than with the triple correlations that are usually considered to be responsible for an inertial subrange (ref. 4). Figure 5-121 is,

however, a good illustration of a calculated case in which essentially complete separation of energy and dissipation regions occurs.

Figure 5-122 shows a log-log plot of the spectrum of dimensionless u--_for x" = - 0.99. In this plot _11 is proportional to
K-I over about four decades of K. The region in which the curve begins to fall off more rapidly than r -t is roughly the region in which

dissipation effects become important. For x' =- 1, the dissipation region would be moved to infinity and _ would vary as K-1 over

the entire range of wavenumbers. The present results for a turbulence with large mean strain rates differ from the usual Kolmogorof

- 5/3 power spectrum that appears to apply at very high Reynolds numbers (ref. 128). As shown by the present results, however,

a- 5/3 power region in an energy spectrum is not necessary for complete separation of the energy and dissipation regions. In fact,
any power between 0 and - 2 will do as well, since the dissipation spectrum is obtained by multiplying th_._eenergy spectrum by r 2.

Vorticity spectra were also calculated, and representative results for spectra of dimensionless to 2 pl_._ottedin figure 5-123.

As x' becomes more negative, the spectra move to higher dimensionless wavenumbers. Contributions to co2 also become spread

out over a much wider range of wavenumbers_.._or vortex sizes. As x' increases positively, the spectra move to lower dimensionless

wavenumbers. The trends for the spectra of to2 (not shown) are similar to those shown in figure 5-123 with the exception that the

shapes of the spectra do not change appreciably with strain. Thus, the vortices in converging flow tend to be smaller at a given x

than they would be for no convergence, whereas they tend to be comparatively large for diverging flow.
To summarize the results in this section, note that near the virtual origin of the turbulence, for both converging and

diverging flow through a cone, all turbulence components decreased along the flow because of viscous dissipation. For a converging
flow the effect of the distortion was to tend to align the turbulent vorticity in the direction of mean flow. This caused the longitudinal

component of the velocity variance to decrease toward zero and the lateral component to increase. For a diverging flow the vorticity
tended to be alined in the transverse direction. In that case the ratio of longitudinal to transverse velocity variance ultimately
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approached a limit of 5. When the results for turbulent intensity were corrected to eliminate viscous decay and divided by local mean

velocity, both longitudinal and transverse components decreased along a converging flow and increased along a diverging flow.

The results were related approximately to heat transfer between a cone wall and a fluid and gave trends very similar to those observed

experimentally.

Turbulent vorticity spectra showed that the turbulent vortices in a converging flow tend to be smaller at a given location

than they would be for no convergence, whereas those in a diverging flow tend to be relatively large. A mean-strain transfer term

in the spectral equation for the longitudinal component oftbe turbulence transferred energy in the high wavenumber direction for

a converging flow. This transfer caused the spectrum for the longitudinal component of the energy to become strongly asymmetric.

Near the cone apex essentially complete separation of the longitudinal energy and dissipation spectra was obtained. A - 1 rather

than a - 5/3 power specrum that extended over a considerable range of wavenumbers was noted for the longitudinal energy

component. Thus, a - 5/3 power spectrum is not a necessary consequence of the separation of the energy and dissipation regions.
5.4.2.7 Turbulence and heat transfer with uniform normal strain.--The analysis in the last section was limited to turbulent

flow through a cone. Here the study is extended to include turbulence and heat transfer with uniform normal strain (ref. 129). That

case has application, for example, to the heat transfer at a stagnation point.
We consider the effect of uniform mean velocity gradients dU l/dx 1,dU2/dx2, dU3/dx3 on locally homogeneous turbulence

and on longitudinal turbulent heat transfer. Locally homogeneous, as in the last section means that the intensity of the turbulence

does not vary appreciably over a correlation or mixing length. Shear stresses are assumed to be absent, and the flow is considered

incompressible and axsisymmetric. The turbulence portion of this work (no heat transfer) has been considered by Pearson (ref. 78).
Additional results for the turbulence are given herein, inasmuch as Pearson gave results only for the accelerating case and did not

include turbulent vorticities or spectra. Instead of a steady-state locally homogeneous but longitudinally varying turbulence, as
considered herein, Pearson considered ahomogeneous time-varying turbulence. The two treatments, however, give the same results.

The turbulence and turbulent heat u'ansfer are assumed to be homogeneous in the transverse direction but only locally

homogeneous in the longitudinal direction. The mean axial velocity is taken as uniform over a cross section. The turbulence is

initially isotropic but is allowed to become anisotropic under the distorting influence of the mean flow.

The equations for locally homogeneous turbulent heat transfer will be considered first; the equations for the turbulence
itself are obtained from section 3.4.2.7. By writing the incompressible Navier-Stokes and energy equations at two points P and P'

in the turbulent fluid, we get

÷Uk + ukuj + axk XUkUj+ Uk + Ul +X--;-, U,Uk=.... aXk ' p axj (5--530)

Equation (5-530) is the same as equation (11) in reference 108, where the derivation is carried out in detail. The vector configuration

for correlations between fluctuating quantities at points P and P' is shown in figure 5-110. The quantity x is the fluctuating

component of the temperature at P, uk, and u i are fluctuating velocity components at P and P', Uk and U i are mean velocity
components, T is the mean temperature at P, Xk, and x[ are space coordinates, t is the time, p is the density, v is the kinematic

viscosity, a is the thermal diffusivity, and a is the instantaneous (mechanical) pressure. The overbars designate correlations or

averaged quantities. The subscripts can take on the values 1,2, or 3, and a repeated subscript in a term indicates a summation. From

equation (4-148) we get,

1 _ atq a --ffk
p ax?xi --2 ax; axiaxl (5-531)

the new independent variables rk --- x[ - xk and (xk) m - l(x k + x[) in equations (5-530) and (5-531) results inIntroducing

(fig. 5-110)

___.,t.u----_+l(Uk+U[)_(__k) _-_u]+(U[_Uk)._..r_k,rU ---] ,_gT --3--,3U] 1 _ (;ruku]+xu]u[.)m + UkUj G3x-'-'_'+"l:uk _)x--'_k+ 2 a(Xk) m

1 bxa' 1 a- 1 _2_u_
---v--'ra'+-:-(v+m-.,, , +(v-a)

210 _(Xj)m p orj 4 O[Xk)mOIXk) m

a2W]  (v+a)a2 
 (Xk)m rk  rOrk

(5- 532)
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and

1 c32_'iu_ 1 /92_iu_: 1 _)2_'iu_ _)2_'iUk

4 O(Xj)mO(Xk) m 2 0(Xj)m_r k 2 0(Xk)mOr j Orj_r k

(5--533)

For locally homogeneous turbulence and turbulent heat transfer, the turbulence is considered homogeneous over

a correlation length, or the scale of the inhomogeniety is much greater than the scale of the turbulence. Thus, a quantity such

as 32_jj/0(xk) m _(Xk)m in equation (5-532) will be negligible compared with O2x-_u_/Ork _r k . (A calculation for axially

decaying turbulence without mean velocity gradients, reference 7, figure 3, implies that this is a good approximation except

very close to the virtual origin of the turbulence.) In general, for locally homogeneous turbulence, 3 / 3(x i)m << _ / _ri- Also, for

that type of turbulence, the mean velocity and mean temperature will vary linearly over distances for which correlations are

appreciable so that_Ui/_x_ =_Uj/_xk = _(Uj)m/0(Xk) m, Uk-Uk =rt _(Uk)m/_(Xt)m' (Uk +Uk)/2=(Uk)m' and

_I' / 0x k = OTrn / 2(x k )m" Finally, in order to make the set of equations determinate, the turbulence is assumed to be weak enough and/or the

mean gradients large enough to neglect terms containing triple correlations. The turbulence in a flow with large velocity or temperature gradients

may not have to be as weak as that in a flow without mean gradients. The terms containing those gradients may be large compared with triple
correlation terms, even if the turbulence is mdoerately strong. Equations (5-532) and (5-333) become, for steady state at a fixed point,

and

__(Uk)m_%Xli+rt_(Uk)m _ _Tm ] _ _-'c7_, _2_jj
'.---_--=--,= ---_(; +(V+_)_

_(Xt)m _'k 1_Ui+ UkUj cl(Xk)m 0% _l'k Ork

1 _2_'; =_2_)(UJ) m ()'_k

p _l'j(_l'j _(Xk) m

(5--534)

(5 -- 535)

The case of uniform axisymmetric strain with no shear and with mean temperature gradient in the longitudinal direction is considered herein.

Equation (5-534) for j = 1 and equation (5-535) then become

and

3 -- 0 7"-7 • , -"7 1 3 _ . . _2x-_'l

(Uk)m _(Xk) m %'Ul+ a(te)r, _-_;_II + D(1)UlUl +a(ll)%'Ul =--F_I '_ +(v+_) _----_k

I 0 2"_-'_7 O't'U"'_"

p Orj_q =-2a(u) _r_

(5-536)

(5 - 537)

where subscripts in paretheses are not strictly tensor subscripts. Equations (5-536) and (5-537) can he converted to spectral form by introducing
the usual three-dimensional Fourier transforms defined as follows:

UiU-'---_= _L _ijeiK'rdK' (5--538)

_ = _ T jei'mr d_ (5-- 539)
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and

= ___, _'eiKrdlc. (5 - 540)

Then, using continuity and the inverse transform of equation (5-539) gives

where

and(5-537)resultsin

"_"__-_'0re J a(to _ "re = -___ s:t el_ rd_ (5- 541)a(lt)

1¢ is a wavevector having the dimension 1/length and dx: = ds:l ds:2 ds:3. Taking the Fourier Iransforms of equations (5-536)

(Uk) m _! a lC _1 + S:1S:_
_(Xk)m (_t)-t "_-K t bl(Pll + a(l ,)TI = 2a(_l) ""_'- TI - (°_+ v)s:2_l'l,

where two equations have been combined into one by eliminating _'.

For axisymmetric strain a22 = a33; and by continuity of the rnean flow,

a22 = a33 =- a l I

(5 - 542)

(5 - 543)

The turbulence is also assumed to be homogeneous in the transverse direction and changes only in the longitudinal or xl -direction, so that

(Uk) m _Y1 __(Ol) m _'_1

_(Xk)m _(Xl)m "

(5-544)

To simplify the notation, let (U i)m- U, (x 1)m-- x, all -a, and bl-=bin the remainder of this section. Then equation (5-542) t_xanes

2

U ff)'las: byl + I as: byl I byl +3a_2_2Tl_(a+v)g2Yl,-_x - '0_i 2 20-_2 +Ta)c3_=-b%l-a7,
(5 - 545)

where use was made of the continuity relation in the form s:2"_(2+ s:3"_t3= -'_1¥I" CotTesponding expi_sions for _11 and q_i are given as

equations (5-497) and (5-498):

and

For uniform a = dU/dx,

U_°I, __ _Pll +I '(Pll +Is: '(Pl, __ii(6s:! _2_ 2vs:21,

a Ox "l Os:! 2 "-2 3s:2 2 30s:3 -

U _(Pii

a 0x

O_i i I O(pi i 1 O(pi i _

K1 "_KI + _'K2 _--'_'22 + 7 S:3 _- --3_01 1 + q)ii- 2 Va s:2(pii'

U a(x- x0)
c-----=l+

Uo U0

(5-497)

(5 - 498)

(5 - 546)
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Equations (5-545), (5-497), and (5-498) can be wriuen in terms of c as

"_-C- 1_ l "2r2_-_2 "2 3_--'_3=---_11+'_1a 3 -1 (a+V)a _2],
(5 - 547)

and

is used:

cO_ll 1(I /)t_l ! + I _911 +1 t)tPll ( _:2 2 ),Oc- aK:1 "2_:2 01c2 2"3 _K3 =(P11_6"_ "- --_K:2
(5 - 548)

c-_c-K1afpii '_KI +'_ 1C2aq°ii 1 __2 r _ 1C339ii ' 1 _ = -3q°l 1+ q°ii(1 - 2 v K2)"3 (5-549)

For solving equations (5-500) to (5-502), the turbulence is assumed to be initially isotropic (at c =I), and, as usual, equation (5-333)

(tPiJ)0= J0 /K2_.._KiKj),12_2 k _J

where J0 is a constant that depends on initial conditions. For the initial condition on )'l (at c = 1), it is again assumed that

=0.

(5 - 333)

(5 - 550)

That is, the turbulence-producing grid is assumed to be unheated, so that the temperature fluctuations are produced by the interaction of the rrean

longitudinal temperature gradient with the turbulence. Equation (5-333) appears to be the simplest condition that gives results that, at all values
of x, reduce tothose forisotropic turbulenceas the mean stralngoes tozero. The use of that initial condition for_j impliesthat Pearson's pararneter

v_2 / a approaches,_, where r,0 is a characteristic initial wavenumber of the tufoulence (ref. 78). Thus, the present results should be applicable

for large kinematic viscosity, small initial turbulence scale, or small strain rate. The case vK 2 / a --_ 0o was not considered by Pearson.

Equations (5-547) to (5-549) can be solved by methods similar to those given in reference 79. Solutions of these equations subject to

the initial condiitons given in equations (5-333) and (5-550) are, in dimensionless form,

_tI =
1 c -5

127t2 (C- l) _:2+_:2_:2 (c3_:_ + _gz+ _:_ )2 exp{-( 1+1 )[2 (c + 1)_:2 + c-' (_:_+ _:_ )]} _ _q2+ c-3_(_:2 + 1(2)

x exp{(---_-l)(c- 1)-1 [1 _12(_32 (_ 2 -1)+ (_2 + K:_)c-l (' - l)]}d_, (5-551)

g_ll = 12_zl ,[_:22+ _:2) C-_(c3_:12_:4, + K:2+ _2)2 exp{-2[l(l + c)K2 + c-1(_:2 + K32)]} '
(5 - 552)

and

= F -3' 3 +_2 +_2) 2 + C31Cl2+ _2 + K2]exp{_2II(1 + C)_l2 + C-' (_:2 + K2)]},
(5 - 553)
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where

[*-:°)I"= -_
u-o ] 'q 'q' (5-554)

(x-,o)_
JoU0 ¢Pij -'> (Pij, (5 - 555)

and

V

j-j-_?i_?i, (5-556)

V
-- _ Pr. (5 - 557)

The arrows --->indicate "has been replaced by." It can be seen that 71,¢Pl1, and ¢Piiale fullctions only of c, r,.i,and Prandtl number. For Pr = 1,

equation (5-551) can be integrated to give

:--I_(c--I)-Ic-31K22+K321'3

r,22,,3[ ]I1 _1|2tlC2 +1{3) - ?( I_2 +K]) 1/3c-I --K! 2/3

43 L 43_, -T3tan-!

In order to integrate over wavenumber sp_e, spherical coordinates are introduced as follows:

1_ 1 = 'ICCOS e,

K2 = t<cos q_sin e,

and

_:3 = _: sin ¢psin e.

For r = 0, equations (5-538) and (5-539) then become

(5 - 559a)

(5 - 559b)

(5 - 55%)

(5- 560)
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and

_jj = IoFJd_' (5- 561)

where

and

fx l-2n 2
• ij = J0 J0 _ijK: sin 0 dq_ dO

Fj = 1o I_n Tjr2 sin 0 d_ d0.

(5 - 562)

(5- 563)

The quantities _j and Fj are functions only of the magnitude of the wavenumber and represent spectrum functions that have been

integrated over all directions in wavenumber space.

The expressions for the velocity variances Ul2 , uiu i , U2 , and u32can he integrated as follows:

1 I_ c(c 3 -1) _ 5 c2(c 3 -1) 2 _ 3 (c 2 +c-2)u2 = 12ff-xc3(c+l) 1/2 + (c+l)(c 2 +c-2) 2 (c2 +c-2) 2 4 c+l
t-l--_c (2c 3+c 2+c-5)

4c+l

3 c2(c 3 -1)(c 3 -3)"

2 (c 2 +c-2) 2

1 [3 C2(C 3 -1)(c 3 -3)
+_ - H

6._r_c 3 _4 (c 2 +c-2) 2
154(c-2_c_3c2(c3-1) 2 [c(c_) 1/2 HI},

(5- 564)

UiUi =

and

where

1 c(2c6 -c3 - 1) 3 c2(c3- 1)2

6._-c3(c+1) 1/2 4(c+1)(c 2 +c-2) 4 (c 2 +c-2) 2

c(c 3 + 1)(c 2 + c + I) c2(c 3 - 1)(c 3 + 2)

I- t 8(c 2 + c - 2)8(c + 1)

3 c2(c 3 - 1)2(c + I) I/2 H 1

4 4 (c 2 + c - 2) 2 J'

(X-- X0)5/2V 5/2

JoU5/2 uiuj _ uiu j,

(5 - 565)

(5 - 566)

(5 - 567)

H = (c2 +c_ 2.)1/2 ln{('c2 t-_- 211/2 + [c(c21------_)11/2}
for c > 1, (5 - 568a)

H -c )1/2 ,,1/2 forc< 1, (5 -- 568b)

and c = U/U0.
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Anotherquantityofimtxxtance is the turbulent vorticity tensor o0io_ j .The vorticity spectnlm tensoris given byequation (5-348), which

we write as

= 2- - (5 - 569)

As was the case for _j, equation (5-348) can be integrated over all directions in wavenumber space to give

rlt r2n 2

Aij = J0 J0 _'_ijK sin 0 d_0 dO.
(5 - 570)

The vorticity tensor is then given by

O)iO_j = foAij dK. (5-571)

Calculated turbulent velocities, vorticities, tempmatme-veiocity correlations, and spectra will be considered next.

Figure 5-124 shows turbulent velocity variances u i2, u 2, and u2 plotted logarithmically in dimensionless form. Included in the plot

is the curve obtained by solving equation (5-548) as though the effects of strain were absent by omitting the second to sixth terms. This solution

gives

5/2 _-_ In -5/2c
"_"0- 48 2_"

(5 - 572)

For an accelerating flow with uniform strain, the longitudinal component u12 decreases more rapidly and the lateral components

decrease less rapidly than they would if the effects of strain were absent For large values of UAJ0, the lateral components reach a steady-state
value as observed in Pearson's results (ref. 78). This result differs from flow through aconverging cone (see the last section) where the increasing

strain rate with distance caused the lateral components to increase without limit as the apex of the cone was approached. The asymptotic

equilibrium solution shown in figme 5-125 is given by

Jo (a'_512
ul--ul=96-  v) (5-573)

Thus, the solution represents a case in which the energy fed into the lateral components by straining action balances the energy dissipated by
viscous forces. For decelerating flow near the virtual origin, both the longitudinal and the lateral components of the velocity fluctuations

decrease in the direction of flow. For lower values of U/U_ all comlxments begin to increase as the effect of normal strainbecomes greater than

the effect of viscous dissipation. The region of increasing turbulent intensity in the decelerating case was not observed for the cone in the last

section, where the strain rate a decreased suflicienfly with distance to allow the tmboleace to decay. As U aplxoaches zero in the ptesent case,

the turbulence components will tend to increase without limit. The assumption of local homogeneity will, however, tend to break down in that

region, and the turbulence components will remain finite in a real situation. An mcte2_ in turbulent fluctuation in the decelerating flow near a

stagnation point (in comparison with the free-stream fluctuation) has been observed experimentally in reference 130.

The reasons for the trends observed in the turbulent velocity variances will become clearer if the vorticity variances o_i2 plotted in

figure 5-125 are considered. The dashed curves for no effects of strain were obtained from the equation

P

V_7/2 tO2 5 In -7/2 C. (5-574)

Consider first the accelerating case. Here thetrends are opposite to those for the velocity variances in figure 5-124; that is, the l°ngitudinal v°rticity

component decays less rapidly and the lateral components decay more rapidly, than they would if the effects of swain were absent. Thus, the
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turbulentvorticitytendstobecomealigned in the flow direction. That alignment occurs first, because the longitudinal vortex filaments are

strengthened by the stretching action of the mean flow, whereas the lateral filaments are shortened and thus weakened; and, second, because the
mema swain rotates the vortex filmnents which were originally oblique so that their axes tend to lie in the flow direction. The velocities associated

with the turbdent vortex filaments will then tend to lie in the transverse directions, in agreement with the carves for velocity variances in

figure 5-124. As for the lateral components of the velocity variance, the longitudinal component of the vorticity variance approaches an

equilibrium solution for large values of U/U0 in which the vorticity generated by the mean strain balances that dissipated by viscous action. This

solution is given by

-- J0 (a_ 7/2
0,22=9--V tT) " (5-s7s)

For decelerating flow at low values of U/Uo, the lateral components of the vorficity tend to increase, whereas the longitudinal component

decreases more rapidly than it would ffthe effects of strain were absenL Thus, the vortex filaments tend to be aligned in the transverse directions.

This alignment occurs because the lateral vortex filaments are strengthened by stretching, while the longitudinal components are weakened since

they are shortened, and because the axes of vortex filaments which were originally oblique are rotated toward the transverse directions by the
stretching action of the mean strain in the transverse directions. With the turbulent vortex filaments mostly aligned in the transverse directions,
the velocities associated with them can be either in the longitudinal or the transverse directions. This explains why, for low values of UAJo, the

curves for both the longitudinal and the transverse components of the turbulent velocity variance in figure 5-124 increase in the flow direction,
whereas in the curves for vorticity variance, only the lateral component can increase. The lateral stretching of the vortex filaments intensifies

both the longitudinal and the transverse velocity fluctuations.
Relative intensity ratios for turbulence components corrected to eliminate viscous decay are plotted in figure 5-126. For obtaining the

ordinates in this figure, values of turbulent velocity variance with the effects of strain included (solid curves infig. 5-124) are corrected to eliminate

the effects of decay by dividing them by corresponding values for pure viscous decay (dashed curves in fig. 5-124). The result (after taking the

square roo0 is divided by U/Uo to give intensity ratios that are relative to the local mean velocity. In addition to the present results
for uniform strain in an incompressible flow, results from the preceding section for flow through a cone and for uniform longitudinal strain

in a compressible flow (ref. 131) are shown in the figure for comparison. The curves for uniform longitudinal strain in a compressible flow

were obtained from equations (31) and (32) in reference 131 by noting that Ug = UO - axo and UgA, = Uo/vo in those equations. The values

for pure viscous decay were obtained by solving equation (23) in Je/4fe_nce 133 with all but the first and last terms .deleted, and again using
Ug/v = Uotv0 and Ug = Uo - axo. This solution gives (U/U0)-" for the ordinate of the dot-dashed curve for t = 1 and (1 + U/U0) 1/2

x U/U0)-3/4/_ for the ordinate of the dot-dashed curve for i = 2, 3.
The curves for the lateral comtxments (i = 2, 3) for accelerating flow are of particular interest because, as shown in the last section, the

ordinates of those curves give approximately, for certain conditions, the Stanton number ratio St/Sto for the heat wanffer between the fluid and

a wall. In obtaining that relation, the normal strain is assumed to be so large that changes in the Stanton number along the flow are govetmd by

normal swain rather than by shear.
The curves for the lateral components (and thus for the Stanton number ratio) for accelerating flow in figure 5-126 indicate but a slight

difference in the results for uniform incompressible strain and for flow in a cone. That is, when plotted in this way, the results at a given U/U0

for accelerating flow seem to depend but slightly on how the strain dU/dx varies along the flow. On the other hand the results for uniform

longitudinal strain in a compressible flow in a cone. That is, when plotted in this way, the results at a given U/U 0for accelerating flow seem to

depend but slightly on how the strain dU/dx varies along the flow. On the other hand the results for uniform longitudinal strain in a comlxessible

flow lie significantly above the others. These results can evidently be explained by the fact that the stretching of the vortex filaments is more intense
in that case, since the lateral compressive strain is absent because of the lack ofaradial flow. The d°t'dashed curve might he related t° heat transfer

in a highly heated constant-area tribewith fluid density changes along the length, whereas the other two curves aremore closely related to nozzle

heat transter in which the effects of compressibility are small (fig. 5-117).

Figure5-_27sh_wsthee_ect_funif_rmn_rma_strain_ndimension_ess_ongitudina_turbu_entheattransfer XUl .Since xu I isdivided

by the temperature gradient b, the ordinates can be considered as representing the variation of longitudinal eddy conductivity with U/Lift Results

are given for Prandtl numbers of 0.01 (liquid metals), 1and 0.7 (gases), and .o. As Prandtl number decreases, the eddy conductivity decreases,

apparently because a turbulent eddy in a high conductivity fluid, such as a liquid metal (Pr - 0.01 ) gains or loses heat by conduction as it moves

longitudinally and thus transfers heat with relatively low effectiveness (fig. 5-80). A__tagiven Prandfl number, the trends in the curves are generally

similar to those observed for the longitudinal component of the velocity variance u 2 in.._figure5-124. A notable exception, however, is that _11

reaches a maximum at low values of U and then aPlm_hes zero at U = 0, whereas u2 became indefinitely large as U approached zero. The

ratio of maximum to minimum xu I is greater at low Prandtl numbers.

The curves for decelerating flow in figure 5-127 illustrate the large increase that normal strain can produce in the longiadinal heat

transfer between a body and a stream in the vicinity of a stagnation point when free-sueam turbulence is present. The eddy conductivity would

decay to very low values (dashed curves) if the effects of swain were absent. (The time available for decay is quite large, since the fluid velocity

becomes very small as the stagnation point is approached.) This increase in heat transfer is in agreement with the experiments in reference 132
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andtheanalysisofreference 133. The increase is evidently produced by the lateral stretching of vortex filaments as assumed in reference 133.

Reference 133, however, considered only transverse vortices, whereas the present analysis considers ran&ma vorticity in all directions. The

present analysis does not, however, considerthe clamping effect of the wall at the stagnation point (effect of viscous diffusion), so that the increase

in tm-bulent heat transferdue to _ strain isprobably exaggera_he_. In fact, an atteanpt tocalculate _ heat transfer near a stagnation point

by assuraing that the maxirnum in the curve in figure 5-527 (Pr = 0.7 for gases) oa'restxm_ tothemaxinmm _y co_vity in _ _

layer, andthattheminimumintheeurve for i= 1 in figure 5-124 corresIxx_ to the turbulence levd in the tmdistmbed stream, gave_y_vi_ng

oneordinate by the other) _in total heat transferconsiderably higl_than tlx_ observed experimentally. _dtsdo_,ho_ver,

that the combination of free-stream turbulence and normal slrain (or lateral vo_x stretching) can be an important factor in increasing the heat

wansfer in the vicinity of a stagnation point.
Dimensionless spectra ofcomIx_nts of the velocity and vorticity variances are plotted in figures 5-128 to 5-130. The spectra show

how contributions to the dirnemionless mean velocity or vorticity fluctuations are distributed among dimemionless waven_. Plotted in

this way, the era'yes for no swain (U/U 0 = 1) reduce to a single curve that does not change with x. Thus, comparison of the curves for various

values of U/U0 shows how strain affects the _ at a given position in _ with the spectnnn at the sarae position with no strain.

For instance, figure 5-1 30 shows that for decelerating flow (UAI0 < 1) contributions to the transverse vorticity occur at smaller wavenumb_s

(larger vortices) than they would for no acceleration. This trend seems to be congruous with the observation in the analysis of reference 133 that

only the larger tmmverse vortices are amplified by slretching in the nei_ of a stagnaaonpoint. Figures 5-128 and 5-129 show

that contributions to _ts of the velocity variance also move to lower dimemionless wavenumbers as velocity ratio decreases. For

U/U 0 > 1, the trends are opposite to those for decelerating fow, or contributions to the mean fluctuations move to higher dimensionless
wavenumbe_.

Figure 5-131 shows spectra c_sponding to the asymptotic equifibriurn solutions given by equations (5-573) and (5-575) for

U/Uo --->o*.Note that the dimensionless quantities used in these spectra have been changed _ _ _ in _ _ _ in _

toobtain finite dimensionless quantities forU-_ _ Thespectrainfigure5-131 areofintexest because they showhowcontributions tothe velocity

and votticity variances are distributed among wavenumbers for a case in which the energy fed into the turbulence by the mean swain exactly
balances that dissipated by viscous action. Although the anves are in equilibrium ateach wavenumber, there is not necessarily an equilibrium

between production and dissipation ateach wavenumber because energy can be transferred between wavenmnhers by the stretching ofdae vortex

filaments by the mean velocity gradients as we discussed for example, in sections 5.4.2.1, 5.4.2.3, and 5.4.2.6.

Spectraofthedimemionlesslongitudinaleddyconducfivity xu I areplottedinfigure5-132forPrandtlnumbersof0.7and0.01.The

shifldng of the curves to lowerdimensionlesswavenumlx_ as U/U 0 decreases is similar to that for the spectra of the longitudinal velocity

fluctuations shown in figure 5-128.

To surranarize the results in this section, we note that for an incomtxcssible accelerating flow with uniform strain, the longitudinal

velocity fluctuations decreased rrJore rapidly, and the lateral fluctuations decreased less rapidly in the flow direction than they wonld ffthe effects

of normal strain were absent. For large values of velocity ratio, the lateral eornponents were found to reach a steady-state equilibrium value, as
observed in Pearson's results. This result ditters from flow through a converging cone, where the increasing strain rate with distance caused the

lateral conknonents to increase without limit as the apex of the cone was _
For decelerating flow at low values of velocity ratio both the longitudinal and transwerse velocity fluctuations increased in the flow

direction as the effect ofn_mal strainbecomes greater than the effect of viscous dissipation. A somewhat sirnilar increase in velocity fl_ltuation

in the dece leratin g flow near a stagnation point has been observed extmrimentall y.This region of increasing turbulent intemity in the dece leratin g

case was not observed in the analysis of flow through a diverging cone, where the strain rate decreased sufficiently with distance to allow the

ua-bulence to decay.

Manyofthe tmndsoir, erved for the velocity-flocluation_ntscould beexplained bythc analylieal resultthat the voaicity became

aligned in the longitudinal direction for accelerating flow and in the transverse directions for decelerating flow.

Whenlhe results for turbulent intensity were corrected forviscous decay and divided by local _ velocity, the transverse component

for accelerating flow, which can be related to heat transfer between the fluid and awall, was approximately the same for flow in a cone and for

uniform incompressible strairLOn the other hand the curve for uniform lon_adinal cotrgnessible swain lay appreciably above the others,

apparently because of the more intense vortex stretching for that case.

The results for longitudinal eddy conductivity in a decelerating flow showed that normal strain could increase that quantity to values

considerably above those which it would have if the effectsof strainwere absent Thus, free-sueam turbulence with normal swain (or lateral vortex

str¢lcl_g) could be an hnpottant factor in increasing the heat transfer in the vicinity of a stagnalion point
Turbulent vorticity spectra showed that the turbulent vortexes in a decelerating flow tended to be laxger at a given location than they

would be for nodecelea-ation. Theeddies associated with the energy and with thelongitudinal eddy conductivity also became comparatively larger.

Spectra were also obtained for the energy and the va_ticity for the asyn-_toticequilibriumsolutionsatlargevelocity ratios.
5.4.2.8 Turbulence and heat transfer with combined two-dimensional shear and normal strain.--The effects of uniform shear and of

non'hal strain on tudmleneehavebeen analyzed separately, forexample, in sections 5.4.Z 1and5.4.2.7. There are _t cases, however, where

shear and normal strain act simultaneously, as in the boundary layer of a fluid flowing through a contraction. Effects which are absent when one

or the other types of strain acts by itself may be present when they act simultaneously. For instance, an apparent laminarizalion seems to occur

in the boundary layers of certain m_:elerating flows (refs. 134 to 136).
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Also,recallthatthereisa strong tendency for the energy to be drained out of a transverse component of a shear-flow turbulence, with

a consequent ultimate decay of the total turbulent energy (see section 5.4.2.1 and fig. 5-63 ). One way of maintaining the turbulence by preventing
that drain, even in the absence of triple correlations, is to add a normal mean strain to the flow, as will be discussed in section 5.4 2.9 (Another

way of doing that is to introduce a destabilizing buoyancy, as already discussed in section 5.4.2.5.)
In this section a simplified model is analyzed in an attempt to obtain some understanding of the effects of combined shear and normal

strain on turbulence and turbulent heat transfer. Uniform shear and uniform normal velocity gradients, as well as a uniform transverse temperature

gradient, are assumed to be acting on a field of initially isotropic turbulence. The turbulence quickly becomes anisotmpic under the influence

of the mean gradients. The turbulent field, although homogeneous in the transverse directions, is assumed to be only locally homogeneous in

the longitudinal or flow direction; that is, the effects of changes in the intensity of the turbulence over a correlation or mixing length in the

longitudinal direction are negligible. The normal strains in the present model correspond to a two-dimensional contraction with the transverse

normal swains occurring in the same direction as the transverse shear and temperature gradients.

Two-point steady-state correlation equations for locally homogeneous turbulence have been obtained as equations (5-486) to (5-488)

and (5-534) to (5-537 ). For uniform mean gradients one can write those equations as

.......-7OUi UTkO_Uj+_Wkr,_+ _ "'-7 1(c}--""77_, _'7_ 2v?2U_U,-_uiu: =---/_uitY - + ,
ukuj _'_k + dx k 3x t _r k "_x k ' p _,_rj _r i 'J 3rk 3rk

(5 -- 576)

± =-2
0 % % %

(5 - 577)

1 O2_jj _ 2 _Ui OtlkUi (5-578)
P Ori Ori 3Xk Ori '

and

3Uj _-_k1 = -2
p

(5-579)

(5- 580)

where ui and u i are fluctuating velocity components atthearbitrary points P andP',Ui is a mean velocity component, xi is a space coordinate,

rt is a component of the vector extending from a point P to P', t is the time, p is the density, v is the kinematic viscosity, t_ is the instantaneous

pressure, and x is the temperature fluctuation. Bars over terms designate correlations or averaged quantities. The subscripts can take on the values

1, 2, or 3, and a repeated subscript in a term indicates a summation.
In obtaining equations (5-576) to (5-580), the instantaneous velocities and temperatures in the incompressible Navier-Stokes and

energy equations were first broken into mean and fluctuating components. The resulting equations were then written at two points in the turbulent

field, multiplied by appropriate temperatures or velocity components and averaged. "I_ equations for correlations involving pressures were
obtained by taking the divergence of the Navier-Stokes equation and applying continuity. In order to make the locally-homogeneous

approximation, the turbulence was considered homogeneous over a correlation length, or the scale of the inhomogeneity was much greater than
the scale of the turbulence. Thus, 3/'dxi << _/'dr_,where the operators operate on two-point correlations. (A calculation for axially decaying

turbulence without mean velocity gradients (ref. 7, fig. 3) implies that this is a good approximation except in the region very close to the virtual

origin o f the turbulence. ) Note also that, for locally homogeneous turbulence, the mean velocity and tempe_ may be considered to vary linearly
over the small distances for which the correlations are appreciable, as assumed here. Finally, in order to make the set of equations determinate,
the turbulence was assumed to be weak enough, or the mean gradients large enough, to neglect terms containing triple correlations. The turbulence

in a flow with large velocity or temperature gradients may not have to be as weak as that in a flow without mean gradients. The terms containing

those gradients may be large compared with triple correlation terms, even if the turbulence is moderately strong.
Equations (5-576) to (5-580) can he converted to spectral form by introducing the usual three-dimensional Fourier transforms defined

as follows:

uiui = J'__ tPijeiK'rdlg, (5 -- 581)
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0_--'_--I-_o_'jeiE'rd_' (5- 582)

UiO--"'7= I-_,. _'_eilc'rd_ (5 - 583)

and

-al"'_= f_ TjeiZ rdlc, (5 - 584)

%°'"7= I_, _'eiK'rdK' (5- 585)

where gis a wavevector having the dimension 1/length and d_ = dgl dg2 d_:3. Taking the Fourier transforms of equations (5-576)

to (5-580), eliminating the pressure-velocity and pressure-temperature terms, and using continuity result in

and

Uk O 0Ut r¢,_ KtKJ = "_,. /" KtKi - "_ + Kg _.,q0iJ] - 2VK2q_ijj (5 - 586)

(5 - 587)

where _ is the Kronecker delta.

Equations (5-586) and (5-587) give contributions of various processes to the rates of change (with Xk) of spectral

components of the turbulent energy tensor uiu j andoftheturbulentheattransfervector x'uj . The terms in the equations which are

proportional to 0/0r,_ are transfer terms which transfer activity into or out of a specgal component by the stretching or compressing

of turbulent vortex filaments by the mean velocity gradient, as discussed in sections 5.4.2.1, 5.4.2.6, and 5.4.2.7. The terms with

in the denominator are spectral components of pressure-velocity or pressure-temperature correlations and transfer activity

between directional components (section 5.4.2.1). The last terms in the equations are dissipation terms, which dissipate activity by

viscous or by conduction effects. The dissipation term in equation (5-587) contains both viscous and conduction effects because

it dissipates spectral components of velocity-temperature correlations. The remaining terms in the equations produce energy or

activity by mean velocity or temperature-gradient effects.

For the present model, a two-dimensional contraction with the through-flow in the xl-direction and the contraction in the

x3-direction is considered. The shear and temperature gradients also occur in the x3-direction. Thus, the mean gradients present in

the flow are 0Ul/0Xi, 0U3/ax3, 0Ul/0x3, and _T/0x3. These gradients are all taken to be independent of position. By continuity of
the mean flow,

aUl 3U3
--=-_-all.
0xi _x3

(5 - 588)

Similarly, set

0U1

_x'--_-- a13 (5 - 589)

and

aT
- b 3. (5 - 590)

ax3
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Inaddition, it is assumed that the turbulence is homogeneous in the transverse directions and that it changes only in the longitudinal

or Xl direction, so that

_ (5-591)Uk_--_k =l-J1 ,

where the operators operate on the correlations or their Fourier transforms. For the model considered, then, equations (5-586) and

(5-587) can be written as

U _)q_ij a13 2__.L_Sjl tPi3 + 2__.L_Sil]tP3j+_:10___.3 ] all[(2._.__Sjl]tPil ( _:l_:i - _= + J ij

r ,<3,<j_t27__j3](Pi3--( 1¢31¢i _ "_ _l_lij _q)iJl_2VK2lPij0K3 .]

and

(5 - 592)

Ul_xl=al3LL 2"-_'-" °1¢33 Lt, < ,s t` < J oK:i

-- b3tP3 j - (t_ + v)K2Tj. (5- 593)

In these equations the shear and normal strain terms are separated and written as the first and second bracketed terms on the right

sides of the equations.
For solving equations (5-592) and (5-593) it is assumed that the turbulence is isotropic at Xl = (xl)0. That condition is

satisfied by the relation (5-333):

_ J0 (K2_.._KiKj),(tPiJ)0 - 127_2 _ Ij
(5 - 333)

where Jo, as before, is a constant that depends on initial conditions. For the initial condition on Ti (at x 1 = (x i )0)it is assumed that

(Ti) o =0. (5-594)

Thus, if the initial turbulence is produced by flow through a grid, that grid is unheated, and the temperature fluctuations are produced

by the interaction of the mean temperature gradient with the turbulence.
Equations (5-592) and (5-593) are first-order partial differential equations in the three independent variables Xl,Kl, and

_c3. In solving the equations, it is convenient to introduce the velocity ratio c which, for a uniform normal strain, is

c ---. U1. = 1+ xi - (xl)0 (5- 595)

tU Jo °

Then,

U1 °xlT--= all c_c" (5-596)
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In order to reduce equations (5-592) and (5-593) to ordinary differential equations, the running variables _1, _ 3, and11 are considered,

of which Iq, Ic3, and c are particular values such that _1 = )el and _3 = le3 when 11= c. If_l, _ 3, and 11are introduced into the set

of equations in place of lq, le3, and c, the resulting equations will, of course, automatically satisfy the original set.

Equation (5-592) (and eq. (5-593) with q_ij replaced by "/])will then be of the form

_. 0@iJ+,rl0 PiJ+( al3r" 0 ii-F( l, 3, oij,le2)"-

To determine under what conditions

&Pij ._0@ij (= _al3=]0_iJ--r dcPij
-_1 ---r q--+ , (5 - 597)

note that qlij is a function of _1, _ 3, and Ti and _:2, so that

d_oij_ _ 0_0ij _ 0_0ij d[3 0q)ij drl

Comparison of this last equation with equation (5-597) shows that they are equivalent if

d_3-r -al3_l

and

drl

or

_1_3 lal3 r2 (constant) 1 = KIK3 _Lal3 _2 (5-598)
- 2 all hl = 2 all _1

and

11_1 = (constant)2 = o: 1. (5 - 599)

Thus, equation (5-597) will hold if _1_3 - (1 / 2) (a13 / all) [2 and ._2 are constant during integration. With the introduction of

equations (5-595) to (5-599), equations (5-592) and (5-593) become ordinary differential equations, components of which are

d_l --_'lt "_'- all)  ,[allt. h2 )-2 h'Jgli3' (5-600)

d_l =-2"_ ''_ll -_-lLh 2 t _l all ) all .]_ _1L hZ all t, hz
(5- 601)

d_033(_l)d_l=--4-_-_13f L t h ) 2al3all_lfh2 VhZall1_°33'
(5 - 602)

dq)ii(_l) __

d_l
_1(iP33 _ 2 al3 2 vh 2--_11)+_'1 "_'11 (p13 + kS al'-'_ _ii'
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and

where

and

_ ._. _ 2 2 1 a13 _2 _1 f
dYl(_i)d_l _l,,t'-"TCpl3 112 _-_2-1-(a+v) h_ ]Yi-_S[al-'T(2h_'-ll-2_l[ h all J h"_"] Y3,

(5-604)

d`/3(_l)d_,-- _P33 - 2_-`/,f -1[1- 2 f-_'2z+2_' L h alla'3_,fh2 (a + v) a-'_"1 "[3,
(5 - 605)

(5-606)

2

In these equations _3 has been eliminated by equation (5-598). The first three equations are independent of the remaining ones, but
the converse is not true.

In order to apply i niti al condilions to the set of equations (5-600)to (5-605), let 9ij( _1 ) = [cpij(_l )]0 and Yi(_1) = [`/i (_i)]0

when 11= 1. These conditions will then automatically satisfy the desired initial conditions that ¢Pij(rl ) = [¢Pij(}Cl)]o and "}qQ:l)=

[`/i(_Cl)]0 when c = 1 [or U 1 = (U1)0] since, by definition, _1 = K:I when rl =c. Equation (5-599)shows that

( l)0

Equation (5-608) gives the value of _1 at which to start the integration for given values of lq and c. In order to satisfy the initial

conditions (5-333) and (5-594), let

(5- 608)

- 12n2 ',.

¢P13(_1) =- 1-_2 _lf

Jo /h 2 _ f2)(P33(_!) = 1-_'2 I'

_Oii(_l) = J0 1.12
6_ 2

`/i =0

.when _! = (_1)0,

where f and h are again given by equations (5-606) and (5-607). The integration of equations (5-600) to (5-605) then goes from

(_1)o to _l = 1<!- We are mainly interested in the final values ofqhj and % for which _1 = lq (and _2 = K:2and rl= c). The quantity

_1 can be considered as a dummy variable of integration.
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Inordertosolve equations (5-600) to (5-605) numerically, it is convenient to convert them to dimensionless form by

introducing the following dimensionless quantifies:

-x0/]''2 _.
_o "] 'q _q' (5-609)

- x0/]''2
_Jo / _1_ _1, (5-610)

"(x-x0)vl
j-_ .Jq)ij --.-_IPij, (5--611)

_ _X _ x°)]al3 --, (5-613)
Uo J a13'

and

V
----, Pr. (5-614)

In addition, spherical coordinates were introduced into the equations by using the transformations

K 1 = _ccos _psin 0'

Kz = _csin q_sin 0

1C3 = K cos 0

The integrations were carried out numerically on a high-speed computer for various fixed values of dimensionless !c, 0, qu,a13, and

c. Directionally integrated spectrum functions can be obtained from (see sections 5.4.2.1. and 5.4.2.3).

AI"iijj =_:JO ti,'_ij)/_'it <`sin°dq>d°

In this equation, D.ij is the vorticity spectrum tensor given by equation (5-348):

h"2ij = (_ijlC 2 - _iKj)_gg -- IC2_ij.

The spectrum functions given by equations (5-616) can be integrated over all wavenumbers to give

(5 -615)

(5-616)

(5 - 348)
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uiui]

--'.[o"t'Ul I= r i t_

Aij

(5-617)

Thus, _ij, Fi and Aij show how contributions to uiuj, "t'l.li , and O}i0) j are distributed among various wavenumbers or eddy sizes.

Computed spectra and correlations will be considered next. For the quantities which involve temperature gradients, the curves will

be given for a gas with a Prandtl number Pr of 0.7.

Calculated dimensionless energy spectra (spectra of dimensionless uiu--_ ) and dimensionless xu 3 spectra are plotted in

figures 5-133 and 5-134. The spectra are plotted for several values of the shear parameter and the normal strain parameter which

are, respectively, proportional to au1/ax3 and aUl/_xi (see fig. 5-133). Both parameters are, in addition, proportional to longitudinal
distance, so that increasing longitudinal distance has an effect similar to that of increasing the velocity gradients.

When plotted by using the similarity variables shown in figures 5-133 and 5-134, the dimensionless spectra for no shear
and normal strain effects (a13 = al 1= 0) are the same for all values of xl, although the turbulence itself decays. Comparison of the

various curves indicates how normal strain and shear effects will alter the spectra for a given position and initial mean velocity. If,

for instance, a dimensionless spectrum lies above the curve for a13 = al I = 0, the turbulent activity for that case is greater than it

would be for no shear or normal strain effects.

The curves in figures 5-133 and 5-134 (as well as the succeeding ones) are all for positive values of all and correspond

to an accelerating flow. The curves indicate that, in general, the effects of both shear and normal strain in an accelerating flow are

to feed energy or activity into the turbulent field. The effect of shear on the spectra is greater at small values of al 1 than at larger

ones; that is, it is greater when the ratio al3/al I is large.

A turbulent velocity-component parameter (v / all)5/2 _i2/J0, with i= 1,2, and 3, is plotted against longitudinal velocity

ratio in figure 5-135. This parameter, in contrast to the spectral parameters in figures 5-133 and 5-134, does not contain x 1 - (xl)o'

and thus can be used to show how ui2 changes with longitudinal position (or velocity ratio) as well as with shear. Included in the

plot is the curve obtained by solving equation (5-592) with the effects of shear and normal strain absent. This solution gives

s,2 In-5/2c
V i --w

-_'0- 48 2_-
(5-618)

Although the turbulence was taken to be initially isotropic, the results here show the turbulencepas already strongly anisotropic from

the effects of shear and normal strain. As was the case for the spectra, these results show that ui2 is increased by the shear and that

the effect of shear is greatest at low values of velocity ratio or normal strain parameter. For low values of velocity ratio, all

components decay because of the effects of viscosity. In that region the lateral components decrease less rapidly than they would
if the effects of normal strain were neglected (compare with dashed curve) and, for al3 = 0, the longitudinal component decays more

rapidly. At larger velocity ratios, the components in the x2- and x3-directions begin to increase as the effects of normal strain offset
those of viscosity. The component in the x l-direction continues to decrease, but at a slower rate than it would if the effects of normal

strain were absent. In this way, the curves in figure 5-135, which are for a two-dimensional contraction, differ from those for the

axially symmetric strains in reference 78 and sections 5.4.2.6 and 5.4.2.7. For the axially symmetric strains, the longitudinal

component decays more rapidly than it would for no effects of strain, whereas, in the present two-dimensional contraction, it decays

less rapidly, except at small velocity ratios. Thus, in this case energy is fed into each of the three components of the turbulent energy

by normal strain.
In an attempt to understand the trends shown in figure 5-135, the three components of the dimensionless turbulent vorticity

(v / a 11)7 / 2 _7/j ° are plotted against velocity ratio in figure 5-136 for ai 3= 0. The dashed curve for no effects of strain was obtained

from the equation

V ._1-..__ C

Jo 192-_--_-
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Theplot shows that the vorticity components in both the Xl- and x2-directions decay less rapidly than they would if the

effects of strain were absent, while the x3-component decays more rapidly..._On the other hand, for the axially symmetric cases

considered in sections 5.4.2.6 and 5.4.2.7, only the longitudinal component t.02 decayed less rapidly. Thus, although in the axially

symmetric case, the turbulent vortex filaments all tended to line up in the longitudinal direction, in the present two-dimensional
contraction there is also a tendency (although less pronounced ) for an alignment to occur in the x2-direction (direction of no

contraction). These trends are in agreement with the trends for velocity fluctuations Shown in figure 5-135. The velocities associated

with a vortex filament will, of course, lie in planes normal to the direction of the filament. Thus, the vortex filaments aligned in the

longitudinal direction will tend to feed energy into the two lateral velocity components, while those aligned in the x2-direction can

give energy to the longitudinal velocity component, as well as to the x3-component.
It may be of interest to compare the behavior of the components of turbulent energy at large velocity ratios for several types

of mean strain. A qualitative comparison is given in the following table:

Type of mean normal strain Behavior of turbulent energy components at large velocity ratios
in accelerating flow

Incompressible axisymmetric strain for
flow in a cone (section 5.4.2.6)

Uniform incompressible axisymmetric

strain (section 5.4.2.7)

Uniform compressible longitudinal axi-

symmetric strain (no lateral strain)

(ref. 131)

Uniform incompressible two-
dimensional strain (present analysis)

Lateral components increase with longitudinal distance. Longitudinal component
decreases faster than it would without effect of strain.

Lateral components approach steady state. Longitudinal component decreases
faster with distance than it would without effects of strain.

Lateral components decrease less rapidly with distance than they would with-

out effects of strain. Longitudinal component decreases more rapidly.

Lateral components increase with longitudinal distance. Longitudinal component
decreases, but at a rate slower than it would without effect of strain.

Figure 5-137 shows the effect of uniform shear and normal strain (velocity ratio) on ratios of the turbulent energy
2 2 _ 2

components for accelerating flow. Both u3 _ and U2/'_U_ tend to decre.__e with i__ncreasing shear parameter and to increase with

increasing normal strain parame__ter; that is, the effect of shear is to make u] and u_ less than u2 , and normal strain tends to make

those quantities greater than u 2 .

Dimensi_n_ess _u_bu_ent heat_transfe_ parameters [v5_2/(J_a_312 )I-_Y _ b3 w_th i = 3 and _ are p_tted in figure 5-_38

as functions of velocity ratio and shear parameter. The trends shown here are qualitatively similar to those for the dimensionless

velocity parameter shown in figure 5-135. It might seem surprising that there should be turbulent heat transfer in the longitudinal

direction Xl, as given by the temperature-velocity correlation xu I , since there is no temperature gradient in the Xl-direction.

However, since there is a correlation between x and u3 (because of the temperature gradient dT/dx3) and a correlation between Ul

and u3 (because of the velocity gradient dUl/dX3), it seems reasonable that there should be a correlation between x and Ul, and

thus a heat transfer in the Xl-direction.

Shear correlation coefficient - ulu Ul2 u3 is plotted as a function of longitudinal velocity ratio and shear

parameter in figure 5-139. The shear correlation is, of course, zero for zero shear and increases as dimensionless a13 increases.
Except at small velocity ratios and large values of shear parameter, where some increase in correlation with increasing normal strain

(velocity ratio) occurs, normal strain tends to destroy the shear correlation.

Figure 5-140 shows the ratio of eddy conductivity to eddy viscosity plotted as a function of velocity ratio and shear

parameter. The eddy conductivity and eddy viscosity are defined by the relations

m

'_tl3
Eh =

dT/ dx 3
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and

UlU 3

dU!/dx 3 "

As the shear parameter, dimensionless a13 increases, the ratio eh/e increases, reaches a maximum, and then decreases, although the

trend is confined to moderately low values of velocity ratio. Results from section 5.4.2.3 for no normal strain show that eh/e

ultimately approaches 1 as dimensionless al3 continues to increase. The results in figure 5-140 indicate that eh/e reaches a maximum

with increasing velocity ratio, as well as with increasing dimensionless a13.
As mentioned at the beginning of this section an apparent iaminarization sometimes occurs in the turbulent boundary layers

of accelerating flows. Some observed low heat-transfer values for flow in nozzles can evidently be explained by the fact that the

mean velocity increases with distance in an accelerating flow (section 5.4.2.6). Some of the visual observations, however, seem to

indicate that the turbulent energy itself decreases (ref. 134). Back, Massier, and Gier (ref. 136) suggested that the effect.._may_r_

caused by a normal strain term in the energy equation which acts like a sink for turbulent energy. The term 2all_U_-uf_
corresponds to the second term in equation (5-603), if that term is multiplied by -_1 and integrated over all wavenumbers. The term

can act like a sink only if u2 is greater than u 2 ; otherwise, it acts like a normal strain production term. The results in figure 5-137

for u 2 / Ul2 indicate that the normal-strain production term will be negative at low values of velocity ratio and high values of shear

parameter. On the other hand, the shear production term -2a13ulu3 (which corresponds to the third term in equation (5-603)

multiplied by -4_1 and integrated over all wavenumbers) will always be positive.
The ratio of the two production terms is shown in figure 5-141 as a function of longitudinal velocity ratio and shear

parameter. The curves show that the normal-strain production term can be negative and thus act like a sink term for turbulent energy
at low velocity ratios and high shear. However, in order for that term to offset the effect of the shear production term, the ratio of
the two terms would, of course, have to be less than-l, and that does not occur for results in figure 5-141. It is possible that the ratio

could be less than -1 at sufficiently large values of shear parameter, qhere appears to be a problem in making the normal strain

production term sufficiently negative to offset the effect of the shear production term. The shear must be large to make the normal

strain production term negative (by making u 2 > u2 ). In that case, however, the shear production term will also be large. The curves

in figure 5-141 show that as velocity ratio (or normal strain parameter) increases, the normal strain production term becomes strongly

positive, since the effect of normal strain is to make u 2 < u].

To summarize the results of this section, note that, in general, both shear and normal strain in an accelerating flow increase

the energy in the turbulent field in comparison to that which would be present for no shear or normal strain. This increase occurs

in spite of the normal-strain production term in the turbulent energy equation that can, under certain conditions of combined shear

and normal strain, be negative and thus act as a turbulent energy sink. For the results computed, the shear production term more than
offsets the effect of the sink term, and the net result is that the turbulent energy increases.

The present results for a two-dimensional contraction show that the lateral components of the turbulent energy increase

with longitudinal distance at large mean velocity ratios. The longitudinal component decreases, but at a slower rate than it would
if the effects of normal strain were absent. Thus, energy is fed into each of the three components of the turbulent energy by normal

strain (and shear). This ease differs from axially symmetric strain cases of accelerating flows, where the longitudinal turbulence

component decays faster with distance than it would if the effects of normal strain were absent. For the two-dimensional contraction,

although most of the vortex filaments tend to line up in the longitudinal direction, there is also some tendency for them to align in
the transverse direction of no normal strain.

The normal strain and shear both tend to produce anisotropy in the turbulence, but they work in opposite directions. The

normal strain increases the ratios of the lateral components to the longitudinal component of the turbulent energy, while shear

decreases the ratio.

In general, the turbulent shear correlation tends to be destroyed by the normal strain. An exception occurs at small velocity

ratios and large shear, where some increase in correlation with increasing normal strain (velocity ratio) occurs.

As either the shear or normal strain parameter increases, the ratio of eddy conductivity to eddy viscosity reaches a maximum

and then decreases. In the presence of lateral mean-shear velocity gradients and lateral temperature gradients, turbulent heat transfer

occurs in the longitudinal as well as in the lateral direction, even though there is no longitudinal temperature gradient.
5.4.2.9 Maintenance and growth of shear-flow turbulence.--It is well known experimentally that turbulence can be

maintained or caused to grow by a mean shear (e.g., in a boundary layer). However, it is not easy to explain that observation

theoretically. It is usually assumed that the turbulence in a shear flow is maintained against viscous dissipation by work done on

the Reynolds shear stress by the velocity gradient. Although that is no doubt true, it appears that the actual mechanism is slightly
more subtle. For instance, although the turbulent energy may be maintained by work done on the Reynolds shear stress by the

velocity gradient, it is not clear that the Reynolds shear stress itself will not decay.
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Ourstudy of homogeneous turbulence with uniform shear, which includes the interaction of the turbulence with the shear

but neglects the turbulence self-interaction, shows that the turbulence ultimately decays (see section 5.4.2.1 and figure 5-63). This
is shown by the dashed curves in figure 5-142, where ui is a velocity fluctuation component, v is the kinematic viscosity, J0 is

a constant depending on initial conditions, U! is the mean velocity, x2 is the coordinate in the direction of the velocity gradient

dU l/dX 2, t is the time, and the overbar indicates an averaged value. (This nomenclature differs slightly from that in the preceding
section, where the velocity gradient was in the xydirection, but is the same as that in section 5.4.2.1.) The turbulence is assumed

isotropic at its virtual origin to. The decay occurs in spite of the fact that the model includes work done on the Reynolds stress by

the velocity gradient. In section 5.4.2.1 it is shown that for certain initial conditions, the total energy at a point can grow for awhile.

The transverse component of the turbulence in the direction of the mean gradient always decays, however, and eventually all of the

components decay. On the basis of these results one might even be tempted to suppose that the Navier-Stokes equations are

inadequate for investigating the possibility of a nondecaying turbulence; however, that supposition would not seem to be justified
(ref. 137).

The equation for the rate of change of the two-point correlations (eq. (4-147)) can for the present case, be written in
abbreviated form as

_uiui (t)t aX E dx 2 J '
(5-619)

where the primed and unprimed quantities are measured at the points P' and P, and i and j can take on the values 1, 2, or 3. The

Kronecker delta _ij equals 1 for i =j and 0 for i ;_j. The first term on the fight-hand side of equation (5-619) is the production term,

and D#, P_, T_, and Crg represent, respectively, dissipation, pressure, transfer, and diffusion terms.

It is argued in section 5.4.2.1 that u22 (or u2u_ ), the turbulence component in the direction of the mean gradient, decays

because the equation for the rate of change of that component does not contain a production term, and, in addition, the pressure-

velocity correlations, for the model used, extract energy from that component. The decay of _222then causes the Reynolds shear stress

UlU2 to decay, since the latter contains u2. There is then no mechanism for maintaining the turbulence, and all of the components

ultimately decay because of viscous dissipation (see eq. (5-619)).

If the decay in the foregoing model of shear turbulence is due to the draining of energy out of the transverse component
m

u2 , as discussed above, then if that drain were prevented or counteracted, the turbulence should grow or at least be maintained. In
the subsection growth due to buoyancy, etc. of section 5.4.2.5 it is shown that this depletion can be counteracted by introducing

destabilizing buoyancy forces in the direction of the mean velocity gradient, and that.all of the turbulence components then

ultimately grow. However, it is not clear from that result just how much of the growth is due to the shear, since the buoyancy by

itself can cause all three of the directional components of the turbulence to grow, although in that case the component in the direction

of the buoyancy forces grows much faster than the others.

In order to determine whether shear by itself can cause turbulence to grow, we have prevented the energy drain from u2

by setting 922 = l/2q_ 11 in the analysis of section 5.4.2.1, where tp_ is the Fourier transform of u iu i . Since the equation for q_33,like

that for 922, does not contain a production term, we also set 933 = 1/2qh 1 in order to prevent energy depletion in that component.

However, the last assumption is unnecessary if we are interested only in the tOll, 922, and 912.__components, since 933 does not occur

in the equations for those components. If we set 922 = 933 = l/2tOl t, then u22 = u 2 = 1/2 u 2 . In making the calculations, we use

the spectral equations of motion from section 5.4.2.1 for 911 and qh2, both of which contain production terms (see eq. (5-619)).

The results are shown by the solid curves in figure 5-142. In contrast with the dashed curves, where the energy was allowed

to drain out of the transveL_ components, and all of the components decayed, the components u 2 and ulu 2 (and thus u22 and

u2 , since u 22=u 32= 1/2 u 2 ) now grow at large times. That is, if we keep the energy from draining out of the transverse components

(particularly u22), the mean shear can cause an ultimate growth of the turbulence. Although the assumption that u 2 = u 2 =

1/2 u2 may be somewhat arbitrary, the calculation under that assumption is enlightening, in that before making it we had no

assurance that turbulence could grow or be maintained by shear when the drain of energy out of the transverse components was

prevented.

The next question is how a severe imbalance between the directional components is prevented in an actual turbulent flow

(other than a weak homogeneous turbulent flow). As discussed in section 5.4.2.1, if the turbulence is nonweak and/or the shear is

not large the interaction of triple correlations with the pressure-velocity correlations can cause the latter to have an equalizing effect

on the directional components. Also, inhomogeneities in the turbulent field may have an effect (ref. 138). Rotta (ref. 139) has

discussed the directional redistribution of energy by the one-point pressure velocity-gradient correlations.
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Anotherflowwhichshedssomelightontheturbulence-producingmechanismwasanalyzedinthelastsection.Thatisthe
caseofcombinedtwo-dimensionalshearandnormalstraininlocallyhomogeneousturbulencewithoutturbulenceself-interaction.
Althoughthatflowwasanalyzedinthelastsection,theresultsgiventheredidnotelucidatetheturbulence-growthaspectsofthe
flow.Theresultsinfigure5-143,whichshowtheevolutionoftheturbulencecomponentsforagivenvalueof(3UI/Ox2)/(0Ul/0xl)
do,however,showthoseaspects.Thetimeincrementt - toisthetimewhichwouldelaspseforanobservertravelingwiththe
acceleratingfluidfromthevirtualoriginoftheturbulenceattotothepositionxl.Fortheresultsgiven,thefluidisbeingstretched
inthedirectionofflow.

Thedashedcurvesinfigure5-143showthatwhenthesheariszero,thepositivelongitudinalstraincancauseu2andu2
to grow, but that u2 , the component in the direction of flow, decays. The shear component UlU2 is, of course, zero in that case.

When a mean shear is applied (solid curves), all of the components ultimately grow. Here, it is clearer that the shear is having an

important effect on the maintenance of turbulence than in the buoyancy case analyzed in section 5.4.2.5, where all of the directional__

components were maintained by the buoyancy alone. In the present case, the acceleration alone does not maintain the u 2

component. (If OUl/OXl = 0 but OUl/OX2 ¢ 0, all of the components would decay as in the dashed curves of fig. 5-142.) The growth

of all of the components in the present case is again due to the equalization of the energy in the directional components. (See

fig. 5-143). Here, the shear and the normal strain have opposite effects as far as the directional distribution of energy is concerned,
so that their combined effect is to keep the energy directionally distributed so that all components can grow.

It might seem surprising that in all of the cases considered here, in which a severe imbalance of energy between the

directional components was prevented, the turbulence continued to increase with time rather than level off. There are no boundaries
on the flows considered here, however, so that the effective Reynolds number of the mean flow is infinite. As the scale of the

turbulence continues to grow, the eddies encounter larger and larger velocity differences, so that the effective driving forces on the

disturbances continue to grow. The turbulence only grows, of course, at least in the case of uniform shear without acceleration, if

sufficient energy is transferred into the transverse components, particularly into u 2 , as already discussed. It is conceiveable that

the transfer of energy into u-'_2might in some cases be sufficient to prevent the turbulence from decaying as it does in section 5.4.2.1,

but insufficient to cause it to grow. That, in fact, seems to be the case in the experiments of Rose (ref. 93), and of Champague et

al. (ref. 94) where a leveling off of intensity appears to occur, although the scale continues to grow. On the other hand, the work
of Mulhearn and Luxton (ref. 95), where the total strains were larger than those of references 93 and 94, indicates a growth of intensity

at large times. In the present paper we are mainly interested in whether, from a theoretical standpoint, the effect of a mean shear

can be great enough to offset the effects of viscosity and keep a turbulent field from decaying, regardless of whether the turbulence

ultimately grows or reaches a steady state.

5.4.3 Uniformly and Steadily Sheared Homogeneous Turbulence When Triple Correlations May Be Important

Thus far in section 5.4 we have considered only cases where mean gradients are large and/or the turbulence is weak

(see section 5.4.2). In those cases one can generally neglect triple-correlation terms in the correlation equations, those terms

being small compared with other terms. For other cases those terms should be retained.
In this section we obtain a numerical solution of the unaveraged Navier-Stokes equations for a uniformly and steadily

sheared turbulence, as in reference 140.18 Conceptually, that is the simplest turbulent shear flow (although certainly not the

simplest to produce experimentally (see, e.g., ref. 94)). A number of other significant numerical studies of that type of turbu-
lence have also been made (see, e.g., ref. 141). In those studies random initial conditions with a range of eddy sizes were used.

That is in contrast to the present study, where nonrandom initial conditions with a single length scale are used.
The numerical method used here is essentially the same as that in section 5.3.2.6; fourth-order finite-spatial-differencing

and a predictor-corrector time-differencing are used (a second-order leapfrog predictor and a third-order Adams-Moulton corrector

(ref. 65)).
We use the unaveraged Navier-Stokes equations because, as discussed in the last chapter, the closure problem arises when

nonlinear equations are averaged to obtain correlation equations. The equations to be solved are the incompressible Navier-Stokes

equations given by equation (5-130):

aa.._k+b(aiak____2=_l_+v 02ai
_t 0x k p 0xi OXk0Xk

(5 - 130)

_aThe results obtained here are qualitatively similar to those in reference 140, although some of the latter were numerically underresolved.
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wherethemechanicalpressure (see eq. (3-14)) is given by the Poisson equation (eq. (5-150)):

I  2(atam)

P _XI _X t _X t 0X m

(5-150)

and where as usual, the subscripts can take on the values 1, 2, or 3, and a repeated subscript in a term indicates a summation. The

quantities fii and fii are instantaneous velocity components (which include the mean velocity components), xi is a space coordinate,

t is the time, p is the density, v is the kinematic viscosity, and 8 is the instantaneous (mechanical) pressure. Equation (5-150) is

obtained by taking the divergence of equation (5-130) and using continuity (eq. 3-4).

In the spirit of section 5.3.2.6, the present numerical study of uniformly sheared turbulence starts with simple determinate

initial conditions which possess a single length scale. As in section 5.3.2.6, we can in this way study how the turbulence develops
from nonturbulent initial conditions, as it does for experimental grid-generated turbulence. Again, much higher Reynolds-number

flows can be calculated with a given numerical grid when a single length scale is initially present, at least for early and moderate
times.

As will be seen, several interesting results which could not be obtained in the previous work on turbulent shear flow are

obtained here. One of the significant findings is that the structure of the turbulence produced in the presence of shear is finer than

that produced in its absence.
For the numerical solutions considered here, the initial velocity fluctuation is assumed to be given by

3

ui= Zan cosqn.x.

II=i

(5-620)

Then, from equation (4-14),

3

ui = Za_ cosq n'x +Ui.
n=l

(5 - 62 I)

n
The quantity a i is an initial velocity amplitude or Fourier coefficient of the velocity fluctuation, qn is an initial wavevector, and

Ui is an initial mean-velocity component. In order to satisfy the continuity conditions, equations (4-10) and (4-21), we set

For the present work let

n n

ai qi =0. (5-622)

I= k(2,+l,I),ai

q_ = (-I,-+I,I)/Xo,

2 = k(l,+_.2,1),3 = k(l,_l,2),ai ai

q_=(l,q:l,l)/xO, qi3=(l,+l,-l)/xo,

(5 - 623)

where k has the dimensions of a velocity and determines the intensity of the initial velocity fluctuation. The quantity x0 is the length

scale of the initial velocity fluctuation. The quantities k and x0, together with the kinematic viscosity v and equation (5-623),

then determine the initial Reynolds number _u o ) x o/v, since the square of equation (5-620), averaged over a period, gives u_.

In addition to satisfying the continuity equation (5-622), equations (5-620) and )5-623) give

Ul2 =u 2 = u2 = u20 (5-624)

at the initial time. (The first three terms of equation (5-624) apply at all times when there are no mean gradients in the flow.) Thus

equations (5-620) or (5-621), and (5-623) give a particularly simple initial condition, in that we need specify only one component
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ofthemean-squarevelocityfluctuation.Moreover,fornomeanshear,theygiveanisotropicturbulenceatlatertimes,asin
section5.3.2.6.Notethatit isnecessarytohaveatleastthreetermsinthesummationinequations(5-620)or(5-621)tosatisfy
equation(5-624).Wedonotspecifyaninitialconditionforthepressurebecauseit isdeterminedbythePoissonequationforthe
pressure(eq.(5-150))andtheinitialvelocities.

In orderto carryoutnumericalsolutionssubjectto theinitialconditiongivenbyequations(5-620)or (5-621),
and(5-623),weuse a stationary cubical grid with a maximum of 1283 points and with faces at x_ = xi ! x0 = 0 and 2_. For boundary

conditions we assume periodicity for the fluctuating quantities; we consider turbulence (or a turbulent like flow) in a box with

periodic walls. That is, let

and

(Ui)x;=2rc+b; --(Ui)x;=b;
(5 - 625)

=Ox;=b;'
(5 - 626)

where b_ = bj / x 0, x_ = xj / x 0, and bj is a variable length.

Using equations (4-14) and (4-15) these become

(Lli)x;=2n+b; =(Ui)x;=b; +(Ui)x;=2rc+b;-(Ui)x;=b;

and

Ox;=2n+b; =Ox;=b; + P;=2_+b; -Px;=b;"

In the present work we assume also that P, given by equation (4-27) when buoyancy is absent, is periodic, so that

=

and equation (5-628) becomes

=°x;=b;"

These equations are used to calculate numerical derivatives at the boundaries of the computational grid.

Since we are considering a uniform shear, we let

(5-627)

(5 - 628)

(5 - 629)

(5-630)

dUl (5 - 631)
Oi = _il d"_2 x2

in the initial condition (5-621) and

(Ui)x; =21t+b; -(.Ui )x; =b; = _il_j 2 2_ _ox2
(5-632)

in the boundary condition 5-627. Equation (5-631) applies, of course, at all times and all xi. For the coefficients in equation (5-621)

we use equation (5-623), where we choose the first set of signs. Equations (5-130) and (5-150) are written in terms of the total velocity

_i, but we can calculate the fluctuating component ui from equation (4-14). It should be emphasized that we do not consider here

a sawtooth type of mean velocity profile, but a continuous profile in which the mean-velocity gradient is uniform at all points. Even

with a uniform mean-velocity gradient, some local inhomogeneity is introduced into the fluctuations by the periodic boundary
conditions. We shall not concern ourselves with that inhomogeneity, however, since we can still calculate products involving

velocities and/or pressures averaged over a three-dimensional period. Those values are independent of the position of the boundaries

of the cycle (see the paragraph containing equation (4-4)).

137



There may be another (related) problem in using periodic boundary conditions (eqs. (5-625) to (5-630)) with a uniform

mean velocity gradient and a stationary (nondeforming) grid. For that case there is a tendency for singularities (discontinuties) to

form at the boundaries of the computational box. This can be seen from equation (4-22), which for our case, can be written as

_u i =-5ildU lu2_dU lx2_u i _ , _ 1 _0 _2u i[UiUkJ---_+ V_.
_t dx 2 dx 2 _x I _x k p _x i _x k

(5 - 633)

As noted earlier, Ge chops out of the equations of motion for gi = 0 by virtue of the equation following (3-22). Equation (5-633)

can also be obtained from (5-130) and (5-631) by using Reynolds decomposition (see section 4.2).

By inspection of equation (5-633) one sees that the term (dUl/dX2) x2 _u-_xl, will cause the fluctuation ui to grow on the

boundary at x2 = 2_ x0 but not on the boundary at x2 = 0. So with periodic boundary conditions there will be a tendency for

discontiuties, and thus numerical instabilities, to form on the boundaries for x2. That tendency can be eliminated by using a

deforming numerical grid, as in references 142 and 141. In that case, however, the grid is soon distorted out of shape, and in addition

the physical significance of the term (dU1/dx2) x2 Oui/dxl is lost because that term is eliminated from the evolution equation
for ui. Fortunately the viscous term in equation (5-633) tends to smooth out discontinuties, particularly if the Reynolds number is

not high. Our results, which use a stationary grid, bear that out. However, before presenting results for the nonlinear case we

will discuss the simplified linearized equations. By doing that we may gain some insight into uniformly sheared turbulence,

both with periodic boundary conditions and with boundary conditions at infinity, and into the relation of that turbulence to the term
(dUl/dx2) x2 _Ui/_X1-

5.4.3.1 The linearized problem.ruBy using Reynolds decomposition, equation (5-150) becomes, for our case (uniform

mean shear and uniform mean pressure),

_2° _2(uku*) 2_u2 _u1
_x_ _xt bxk _xt _)xl bx2

(5-634)

where equations (4-14) and (4-15) are used. Equations (5-633) and (5-634) are linearized by neglecting the terms --¢3(uiuk)/Oxk and

--¢32(Uku g)/OXk_X g. The numerical solution, with initial and (periodic) boundary conditions given by equations (5-620), (5-623),

(5-625), and (5-626), then proceeds as in the nonlinear case.

We first obtain an analytical solution for unbounded linearized fluctuations by using unbounded three-dimensional Fourier
transforms. Instead of working with the averaged equations as in section 5.4.2.1, it is instructive to work with the unaveraged ones,

and use the initial condition given by equation (5-620). In this case the Fourier transforms must be generalized functions (a series

of 8 functions) (section 5.2), but the method of solution is the same as that in the earlier work. Equation (5-633) for u2 and equation

(5-634), when linearized, are independent of Ul and u3.The solution obtained by using the initial condition (5-620) is

u2 = ZU_ cos(qn "x- a12q_tx2 ),
n=i

(5 - 635)

where

3

G = Z Pn sin(qn •x- a12q[Itx2),
n=l

n n 1 2 n22
a_q n2 exp[_vt(qn 2 -al2qlq2t+-_al2ql t )]'Ugh = n n 2 n2 2

q n2 -2al2qlq2t+al2ql t

(5 - 636)

(5- 637)

en _-.

n n n2 exp[_vt(qn 2 _al2q[aq_t+3al2qp2t21t
-2pal2a2ql q

(qn 2 n n 2 n2 2 2-2a12qlq2t+a12ql t )

(5-638)
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n 2 n 2 n 2 n
a12 = dUl/dX2, q n2 = ql + q2 + q3 , and the a i and qn are given in the initial conditions (eqs. (5-620) and (5-623) (with the

first set of signs). Mean values are obtained by integrating over all space. For instance,

3

 u--7=E
n=l

(5-639)

According to the linearized analytical solution given by equation (5-635), the manufacture of small-scale fluctuations takes

place only in the x2-direction. Because of the analytical character of equation (5-635) and the regularity of the initial condition, the
fluctuation u2 is nonrandom. Evidently, as in the case of no mean gradients, the only way one can have a linear turbulent solution

is to put the turbulence in the initial conditions (section 5.4.2.1). The development of small-scale nonrandom structure is produced

by the quantity al2 q_ tx2 in the argument of the cosine in equation (5-635) (al2 = dUl/dx2). That quantity arises from the term
-a12x20uv//)Xl in equation (5-633). Thus the term al2xz0u2/0Xl, or equivalently a12 q _ t x2, acts like a chopper which breaks the flow

into small-scale components.
For discussing the linearized case for constant periodic boundary conditions, it is convenient to convert equations (5-633)

and (5-634) to a spectral form by taking their three-dimensional Fourier transforms (section 5.2). This gives for u2, on neglecting

nonlinear terms,

_ ' " V f n2 )t_ + 2al2q_r2q)_" (5-640)0_ al2qrE 1__._(K:1,_2__:2,_:3)_ _ql +_:2+q_: n: n2'
0t r_ 2 ql +_:22+q3

where

1= 8-x
(5- 641)

u_(x)= _ II2cP_(_)eiK'xdlqd_:3,

")(2----....-oo

(5 - 642)

3 3

n=-3 n=-3

(5 - 643)

1(:is the wavevector, and92 is the Fourier transform of u2. Note that a finite transform is used in the x2 -direction in order to satisfy

periodic boundary conditions at x2/x0 = -_, re.
Strictly speaking, equation (5-640) is for a sawtooth mean-velocity profile, whereas the numerical results are for a uniform

mean-velocity gradient. Equation (5-640) should still apply, however, at least for the present discussion purposes to points inside

but not outside the computational grid.
For constant periodic boundary conditions for ui, small-scale structure in the fluctuations or the transfer of energy between

wavenumbers is produced by the term containing the summation over K_ in equation (5-640). That term is the Fourier transform

of-al2x20u2/0Xl (eq. (5-633)). Fromits form we see that it can Produce a comPiicated inter-wavenumber interacti°n" The quantity

tp_ at each _:2interacts with 9_ at every other allowable _:2. A difference between the solutions for unbounded conditions and those

for constant periodic conditions is that only fluctuations at intergal K2 are possible when periodic conditions are imposed, whereas
for unbounded conditions, fluctuations are possible at all values of K2. Thus spectra plotted against _2 are discrete for periodic

boundary conditions, rather than continuous as they are for unbounded flows.
5.4.3.2 Nonlinear results._Figure 5-144 shows a numerically calculated development of instantaneous velocity profiles

for uniformly sheared turbulence. The profiles, which are initially regular and given by equation (5-621), soon take on a turbulent-

like appearance. In particular, that is the case for profiles plotted in the x2-direction. For the low initial Reynolds number shown,
and 1283 grid points, the profiles are well-resolved, even though steep gradients characteristic of turbulent flow often occur. Note,

however, that we have to use a much finer computational gird with sheared turbulence than we did for the unsheared turbulence

in section 5.3.2.6, apparently to resolve singularities which may tend to form in our sheared case. The viscous terms in the

instantaneous equations appear to do a goodj ob of smoothing out any singularities which may tend to form (see discussion following

equation (5-633)). Calculated values at grid points are indicated by symbols.
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Asdiscussed in the last section, the linear term (dUl/dX2) x2 _ui/_x 2 in equation (5-633) acts like a chopper which

manufactures small-scale components, but cannot by itself produce radomization. Only the nonlinear term _(uiuk)/_x kcan by itself,

do that. But the linear term in combination with 8(UiUk)f0xk can produce randomization by proliferation of harmonic components

(one loses track of the individual components because of their sheer number) and by strange behavior (strange attractors in the

nondecaying case), as will be discussed in the chapter on chaos and sensitive dependence on initial conditions (chapter VI).
The linear term (dU1/dx2)x2 8ui/_xl in equation (5-633) apparently produces small-scale temporal as well as small-scale

spatial fluctuations. That is illustrated in figure 5-145. When the mean shear is removed from the flow, the small-scale temporal
fluctuations die out, leaving only larger ones. Figure 5-145 shows, in a particularly graphic manner, the effectiveness of the term

(dU 1/dx2)x 2 _Ui/_X 1 in producing small-scale turbulent structure. Note the correspondence between that term and the mean-gradient

transfer term Ti]'(g ) in equations (5-326) and (5-330).

Finally, we present evolution curves for mean-square values of Ul, u2, and u3 in figure 5-146, where the overbars indicate

space-averaged values (see paragraphs containing eqs. (4-4) and (4-3)). The longitudinal component ul2 soon becomes much larger

than the other directional components. That occurs because the turbulence-production terms (the second and third terms in equation

(5-296)) are nonzero only in the evolution equation for u 2 . Whatever energy goes into u22 and u32 gets there through directional

transfer by the pressure-velocity terms in equation (5-296). The smallest component of the sheared turbulence is _'2' in agreement

with the analytical results in section 5.4.2 and experiment. After the shear is removed, the three components ultimately tend toward

equality; that is a necessary condition for the turbulence to approach the isotropic state. Again, that effect is produced by the pressure-

velocity terms in equation (5-296). Note that u22 continues to increase for a short time after the shear is removed, probably because

it receives energy from Ul2 . It is not entirely clear why u] does not also increase by receiving energy fr__.omUl2 . It seems likely that

since energy has been drained out of the u22 - component by the shear to a greater extent than out of u32, it will tend to return more

rapidly to u 2 than to u 2 when the shear is removed. That argument would make more sense if the shear were removed earlier, when

u22 is still significantly less than u32 . Perhaps the numerical method breaks down for the portions of the curves from say t* = 0.25

to 0.325; the Reynolds number based on "-_ 1/2 may become too high in that region for accurate numerical results to be obtained.Ul

5.5 CONCLUDING REMARKS

This long chapter begins with a discussion of Fourier analysis; it is pointed out that Fourier analysis is a convenient way

of studying the distribution and transfer of turbulent activity among scales of motion. In addition it simplifies the basic equations

by replacing spatial derivatives by algebraic expressions. A distinction has to be made between equations containing only averaged

quantities and those containing, in addition, instantaneous (unaveraged) quantities. The latter require a consideration of generalized
functions (functions which do not exist in the ordinary sense). Basic continuum equations for turbulence are obtained in physical

and in spectral space; these include the averaged and unaveraged (instantaneous) forms. Spectral transfer of turbulent activity is

studied for both homogeneous and inhomogeneous turbulence.

The remainder of the chapter consists mostly of illustrative solutions of the basic turbulenoe equations, those solutions

being obtained to study various turbulence processes. The solutions are divided into those with and without uniform mean gradients.
The latter consider mainly spectral transfer between wavenumbers produced by nonlinear turbulence self-interaction and its

interaction with turbulence dissipation. The former consider, on the other hand, spectral transfer and production of turbulence by

mean gradients. Linearized analytical solutions are obtained for weak turbulence without mean gradients and for stronger turbulence

with large mean gradients; they are shown to agree quite well with available experimental data. Solutions for stronger turbulence

without mean gradients in which the correlation equations are closed by specification of sufficient random initial conditions also

give realistic results in agreement with experiment. Those solutions involve the "gap" problemmthat is, the problem of bridging

the gap between the infinite amount of data theoretically required to specify the initial condition of the turbulence and the limited

data generally available. Our solutions appear to successfully bridge the gap, in that the evolution of all of the quantifies used to

specify the initial turbulence are calculated. Also, nonlinear turbulent solutions with and without uniform mean velocity gradients,
and in which the initial conditions are nonrandom, are obtained numerically. The regular initial fluctuations quickly acquire a

turbulent like appearance. Moreover, the insertion of mean shear into the flow produces small-scale temporal fluctuations.
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t* = (V/x2)t

2 IA (x_lv) dUl/dX 2 = 138.7 (x2/v) dUl/dX 2 = 0

1

II1 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 •

(v/x2)t

(X_)/V) dUl/dX 2 = 138.7 (x2/u) dUl/dx 2 = 0

2 [(c) I I I I I I 1 I 1 I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

(V/Xo2)t

Figure 5-145.--Evolution of instantaneous velocity components at center of computational grid.
--1/2

R0 = u2 Xo/V = 34.68. Mean shear removed at t* = 0.325.
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Figure 5-146.--Evolution of mean-square velocity components. R0 = u0

removed at t* = 0.325.
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